Mechanisms of nanostructure formation by dealloying
脱合金形成纳米结构的机制
基本信息
- 批准号:510071612
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Dealloying consists in the almost complete dissolution of only one component from a binary solid solution or an intermetallic compound, generating porosity at the scale of few nanometers from a homogeneous parent phase. Due to the outstanding definition, uniformity and reproducibility of their nanoscale microstructure, nanoporous metals produced in this way, and prototypically nanoporous gold, have become model systems for understanding size- and interface effects on the mechanical as well as functional behavior of nanoscale systems. At the state of the art, dealloying can be realistically modeled by atomistic numerical simulation. In other words, the key elementary processes at the atomic scale have been identified. However, open questions remain: what characteristic length scale is formed, what percentage of the sacrificial component remains in the structure, and how do these parameters depend on the experimental control parameters, in particular the composition of the initial phase and the driving force for dissolution? Answering these questions would enable further refinement of the process and thus the fabrication of homogeneous monolithic bodies of nanomaterials with structure sizes potentially < 5nm. Such materials could then be produced not only as pure components, but also as solid solutions. This would further expand the already highly interesting spectrum of mechanical properties and functional properties of nanoporous metals. The project aims at developing an empirical database, an understanding of the underlying mechanisms, and a materials law with predictive character. The work program in the project is based on an initial hypothesis for the interactions that determine the microstructural evolution. The hypothesis considers the dissolution of the less noble component, the passivation by enrichment of the more noble component at the surface, and the redistribution by curvature-driven diffusion. Closely matched experiments and atomistic simulations will be used to test the hypothesis and develop it further based on the observations. The experiment investigates the electrochemical dealloying of Ag-Au-Pt with different starting compositions, focusing on starting alloys diluted in the noble component, and alloyed with Pt to suppress coarsening by surface diffusion. Microstructural evolution during dealloying is monitored ex situ as well as in situ with small-angle X-ray scattering. Kinetic Monte Carlo simulations mimic the experiment under matched conditions. In addition, simple model scenarios - not accessible to the experiment - are investigated and the results compared with the expectations based on the initial hypothesis.
脱合金化是指从二元固溶体或金属间化合物中几乎完全溶解一种组分,在均匀的母相中产生几纳米尺度的孔隙。由于其纳米级微观结构的出色定义,均匀性和可重复性,以这种方式生产的纳米多孔金属和原型纳米多孔金已成为理解纳米尺度系统的机械和功能行为的尺寸和界面效应的模型系统。在目前的技术水平上,可以通过原子数值模拟真实地模拟脱合金过程。换句话说,原子尺度上的关键基本过程已经被确定。然而,仍然存在一些悬而未决的问题:形成了什么样的特征长度尺度,在结构中保留了多少百分比的牺牲成分,以及这些参数如何依赖于实验控制参数,特别是初始相的组成和溶解驱动力?回答这些问题将有助于进一步改进该工艺,从而制造出结构尺寸可能小于5nm的纳米材料的均匀整体体。这样,这些材料不仅可以作为纯组分生产,而且可以作为固溶体生产。这将进一步扩展纳米多孔金属的机械性能和功能特性的高度有趣的光谱。该项目旨在建立一个经验数据库,了解潜在的机制,以及具有预测性的材料规律。项目中的工作计划是基于决定微观结构演变的相互作用的初始假设。该假设考虑了低贵金属成分的溶解,高贵金属成分在表面富集的钝化,以及曲率驱动扩散的再分布。密切匹配的实验和原子模拟将被用来检验这一假设,并在观察的基础上进一步发展它。实验研究了不同起始成分的Ag-Au-Pt的电化学脱合金,重点研究了起始合金中贵金属成分的稀释,以及与Pt合金的表面扩散抑制粗化。用小角x射线散射法监测了非原位和原位脱合金过程中的显微组织演变。动力学蒙特卡罗模拟模拟了匹配条件下的实验。此外,还研究了实验无法获得的简单模型情景,并将结果与基于初始假设的期望进行了比较。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr.-Ing. Jörg Weißmüller其他文献
Professor Dr.-Ing. Jörg Weißmüller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr.-Ing. Jörg Weißmüller', 18)}}的其他基金
Open-system elasticity: experimental verification of the Larché-Cahn theory and application in functional materials with switcheable stiffness
开放系统弹性:Larché-Cahn 理论的实验验证及其在具有可切换刚度的功能材料中的应用
- 批准号:
426448276 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Microstructure evolution and impact of mechanics for catalysis
微观结构演化及力学对催化的影响
- 批准号:
269855351 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Units
Potentialänderung von Metallelektroden bei elastischer Dehnung
金属电极弹性拉伸时电势的变化
- 批准号:
65451559 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Ni-20Cr合金梯度纳米结构的低温构筑及其腐蚀行为研究
- 批准号:52301123
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Linking formation mechanisms, nanostructure and function in metal oxide nanosheets using multimodal characterisation.
使用多峰表征将金属氧化物纳米片的形成机制、纳米结构和功能联系起来。
- 批准号:
EP/W026937/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Understanding helium induced nanostructure formation
了解氦诱导纳米结构的形成
- 批准号:
DP200102830 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Discovery Projects
Formation and control of nanostructure bundles by helium plasma exposure
通过氦等离子体暴露形成和控制纳米结构束
- 批准号:
20K22322 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Spontaneous nanostructure formation during supercritical drying and its application for material synthesis
超临界干燥过程中自发纳米结构的形成及其在材料合成中的应用
- 批准号:
19K05193 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of development process of vacancy-type defects in rare-gas-plasma-induced metal-nanostructure formation process
稀有气体等离子体诱导金属纳米结构形成过程中空位型缺陷的发展过程研究
- 批准号:
17K14896 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Semimetal (metal) mediated group-IV-semiconductor nanostructure formation and its application for next-generation fundamental device technologies
半金属(金属)介导的IV族半导体纳米结构形成及其在下一代基础器件技术中的应用
- 批准号:
17K06338 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a direct kinetic Monte Carlo method for the investigation of nanostructure formation processes
开发用于研究纳米结构形成过程的直接动力学蒙特卡罗方法
- 批准号:
26410013 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Formation of nanostructure of food plant proteins
食品植物蛋白纳米结构的形成
- 批准号:
26660111 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Formation of Si nanostructure solar cells on glass substrates using aluminum induced crystallization
利用铝诱导结晶在玻璃基板上形成硅纳米结构太阳能电池
- 批准号:
26600049 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of Photovoltaic Systems Utilizing Nanostructure Formation of Liquid-Crystalline Semiconductors
利用液晶半导体纳米结构形成的光伏系统的开发
- 批准号:
23750218 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)