Novel Thin-Film Piezoelectric Materials for Ultrasound Applications

用于超声波应用的新型薄膜压电材料

基本信息

项目摘要

Our project explores a novel approach for designing high frequency planar microacoustic converters. Such devices are currently used for signal processing in mobile communication systems or as microacoustic sensors. It appears as if the performance limits of common piezoelectric single crystals (SiO2, LiNbO3, LiTaO3, AlN, …) have been reached. Our project employs a radically new approach to enhance the performance of the current microacoustic components. A key element is a functional thin film made from a novel piezoelectric material which is used to convert high frequency electrical into acoustic signals. Our innovation consists in controlling the functional material properties through epitaxial growth in order to optimize these properties with respect to a specificapplication. This is achieved on the one hand by intentionally straining the crystal lattice in a controlled way and, on the other hand, by purposefully introducing defects during film growth. Our thin films are fabricated from potassium-sodium-niobate (K_xNa_{1-x}NbO_3), which allows for piezoelectric ultrasound conversion. The electromechanical coefficients are comparable to lead-based piezoelectric compounds. However, there are no concerns about sustainability when using K_xNa_{1-x}NbO_3. The extremely thin film thickness of less than 100 nm is an essential novelty in comparison with current layered ultrasound converters. In particular, this enables tailoring of functional properties over a large range via strain- and defect engineering. Thus, structural material properties provide a new degree of freedom for the development of next generation ultrasound components. This project builds on the expertise of the collaborators for thin film growth of piezoelectric K_xNa_{1-x}NbO_3, its structural and functional characterization and for technology development for microacoustic components. By combining fundamental and applied material science with system design engineering we are able to explore the potential of this novel material in conjunction with innovative design strategies. However, development of specific devices is not a project goal. The successful execution of the project consists rather in the validation of the advantages of the novel material system at high operation frequencies (> 5 GHz) in comparison with known single-crystal substrates.
本课题探索一种设计高频平面微声转换器的新方法。这种装置目前用于移动通信系统中的信号处理或作为微声传感器。普通压电单晶(SiO2, LiNbO3, LiTaO3, AlN,…)的性能似乎已经达到极限。我们的项目采用了一种全新的方法来提高当前微声元件的性能。一个关键的元素是由一种新型压电材料制成的功能薄膜,该薄膜用于将高频电信号转换为声信号。我们的创新在于通过外延生长来控制功能材料的性能,以便针对特定应用优化这些性能。这一方面是通过以一种可控的方式有意地使晶格紧张,另一方面是通过在薄膜生长过程中有意地引入缺陷来实现的。我们的薄膜是由铌酸钾钠(K_xNa_{1-x}NbO_3)制成的,它允许压电超声转换。机电系数与铅基压电化合物相当。然而,当使用K_xNa_{1-x}NbO_3时,不存在可持续性问题。与现有的层状超声转换器相比,小于100纳米的极薄薄膜厚度是必不可少的新颖之处。特别是,这使得通过应变和缺陷工程在大范围内裁剪功能特性成为可能。因此,结构材料性能为下一代超声元件的开发提供了新的自由度。该项目建立在合作者对压电K_xNa_{1-x}NbO_3薄膜生长,结构和功能表征以及微声元件技术开发的专业知识的基础上。通过将基础和应用材料科学与系统设计工程相结合,我们能够探索这种新型材料与创新设计策略相结合的潜力。然而,开发特定的设备并不是项目的目标。该项目的成功实施在于验证了新材料系统在高工作频率(> - 5 GHz)下与已知单晶衬底相比的优势。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Gerhard Fischerauer其他文献

Professor Dr.-Ing. Gerhard Fischerauer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Gerhard Fischerauer', 18)}}的其他基金

Strongly perturbed cavity resonators as tools for non-destructive in-situ material parameter measurement
强扰动空腔谐振器作为无损原位材料参数测量的工具
  • 批准号:
    389867475
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Regelung von Benzinmotoren mittels hochfrequenzbasierter Katalysatorzustandserkennung
使用基于高频的催化剂状态检测控制汽油发动机
  • 批准号:
    193134128
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Grants (Transfer Project)
Kohlenwasserstoffsensoren auf der Basis von Grenzschichteffekten zwischen halbleitenden Dünnschichten
基于半导体薄膜之间边界层效应的碳氢化合物传感器
  • 批准号:
    162182810
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Beladungserkennung von Dieselpartikelfiltern mittels Hochfrequenztechnik
使用高频技术对柴油机颗粒过滤器进行负载检测
  • 批准号:
    29324632
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Integrierte hoch-selektive keramische Kohlenwasserstoff-Gassensoren auf Zeolith-Basis
集成高选择性沸石陶瓷碳氢化合物气体传感器
  • 批准号:
    5412823
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Wear-resistant thin film-based triboelectric nanogenerators for self-powered sensing
用于自供电传感的耐磨薄膜摩擦纳米发电机
  • 批准号:
    527445509
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Novel antiferromagnetic topological spin structures using thin-film multilayer systems and their functionalities
使用薄膜多层系统的新型反铁磁拓扑自旋结构及其功能
  • 批准号:
    23K13655
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Novel Moisture-, Oxygen- and UV-Blocking Thin Film Coatings on Flexible Plastics for Perovskite Solar Cell Encapsulation
用于钙钛矿太阳能电池封装的柔性塑料上新型防潮、防氧和防紫外线薄膜涂层的开发
  • 批准号:
    575622-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Novel Thin Film and Nanoparticle/Polymer Neuromorphic Devices
新型薄膜和纳米颗粒/聚合物神经形态器件
  • 批准号:
    573607-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Novel Thin Film Biomaterials for Tissue Engineering
用于组织工程的新型薄膜生物材料
  • 批准号:
    RGPIN-2016-06429
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Novel Optical Metrology Tool for Thin Film Haptic Sensor Technologies
用于薄膜触觉传感器技术的新型光学计量工具
  • 批准号:
    10004702
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Development of novel materials by the combination of ultrahigh-pressure techniques and thin film techniques
超高压技术与薄膜技术相结合开发新型材料
  • 批准号:
    20J12363
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of novel graphene based inks to replace toxic and scarce materials used in thin film photovoltaics
开发新型石墨烯墨水以替代薄膜光伏发电中使用的有毒和稀缺材料
  • 批准号:
    83213
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CAREER: Novel Electrodeposition Method using Water-In-Salt Electrolytes for Superconductor Thin Film Fabrication
职业:使用盐包水电解质制造超导薄膜的新型电沉积方法
  • 批准号:
    1941820
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Novel Thin Film and Nanoparticle/Polymer Neuromorphic Devices
新型薄膜和纳米颗粒/聚合物神经形态器件
  • 批准号:
    551787-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了