Developing pinMOS towards dual channel electrical and optical memory

开发pinMOS以实现双通道电光存储器

基本信息

项目摘要

Although memories represent by far the largest part of conventional (silicon-based) electronic systems, work on organic memories is severely lagging behind the research efforts regarding OFETs. While many concepts have been proposed, there is currently no consensus on the way forward. Although a lot of these memory concepts are entirely electronic in nature (i.e., they are both written to and read from by electrical means), some application would tremendously benefit from the ability to read and write optically in addition to the purely electrical way of achieving read/write functionality – for example contactless applications similar to “barcode”-scanners that require read and write without direct physical contact or optical sensors that “remember” light exposure. With this proposal we want to study in detail and further develop a novel memory structure that we recently developed. It can be thought of as a cross between a conventional p-i-n diode OLED structure and a MOS capacitor – dubbed as pinMOS in here. In preliminary experiments, we were already able to observe a distinct memory window and electrical reading and writing of memory states. One important advantage of this technology over others also lies in its foundation in well-established OLED fabrication techniques and the resulting easy integration with OLEDs, i.e. all such scenarios in which OLEDs and memory should be combined. While the initial results are highly promising – not only due to the simplicity of the device compared to FLASH-type floating gate device structures, but also due to its high reproducibility, state stability, and strong indications for a multibit storage capability– the memory qualities of this device need to be further developed which in turn requires us to better understand the device principle and physics. For this, the pinMOS device needs to be studied in much more detail, and its layer structure and properties such as doping concentrations and layer thicknesses need to be optimized for improved memory performance, i.e. increased spread of states. Another major goal is to develop this device into a fully electro-optical memory device. Due to the fact that the device contains a p-i-n junction, one of the memory states can currently already be detected by a brief visible light emission. Extending this to writing and erasing by light can be achieved by 1) replacing the intrinsic device layer with a light harvesting donor-acceptor structure and 2) substituting the oxide for a wide-band gap organic material. Achieving this will enable us to demonstrate the first organic memory device that can be fully yet independently accessed and controlled electrically and optically.
尽管存储器是传统(硅基)电子系统中最大的一部分,但有机存储器的研究工作严重落后于ofet的研究工作。虽然已经提出了许多概念,但目前还没有就前进的方向达成共识。虽然很多这些存储器概念在本质上完全是电子的(即,它们都是通过电子方式写入和读取的),但一些应用程序将极大地受益于光学读写能力,除了纯电子方式实现读/写功能之外-例如类似于“条形码”的非接触式应用程序-需要读写而无需直接物理接触的扫描仪或“记住”光暴露的光学传感器。有了这个提议,我们想详细研究并进一步开发我们最近开发的一种新的记忆结构。它可以被认为是传统的p-i-n二极管OLED结构和MOS电容器之间的交叉-在这里被称为pinMOS。在初步的实验中,我们已经能够观察到一个明显的记忆窗口和记忆状态的电读写。与其他技术相比,该技术的一个重要优势还在于其建立在成熟的OLED制造技术基础上,并由此容易与OLED集成,即OLED和存储器应该结合的所有此类场景。虽然最初的结果是非常有希望的-不仅因为该器件与flash类型的浮栅器件结构相比简单,而且由于其高再现性,状态稳定性和多比特存储能力的强烈迹象-该器件的存储质量需要进一步开发,这反过来要求我们更好地了解器件原理和物理。为此,需要对pinMOS器件进行更详细的研究,并且需要对其层结构和性能(如掺杂浓度和层厚度)进行优化,以提高存储性能,即增加状态的扩展。另一个主要目标是将该器件发展成为完全光电存储器件。由于该器件包含一个p-i-n结,目前已经可以通过短暂的可见光发射检测到其中一个存储状态。将其扩展到光写入和擦除可以通过以下方式实现:1)用光捕获供体-受体结构替换固有器件层;2)将氧化物替换为宽带隙有机材料。实现这一目标将使我们能够展示第一个可以完全独立地访问和控制电和光学的有机存储设备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stefan Mannsfeld其他文献

Professor Dr. Stefan Mannsfeld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Stefan Mannsfeld', 18)}}的其他基金

Record-High Organic Device Performance enabled by Polymorphism in Organic Semiconductors
有机半导体多态性实现创纪录的有机器件性能
  • 批准号:
    368686449
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
High-frequency modeling and characterization of printed organic crystalline transistors
印刷有机晶体晶体管的高频建模和表征
  • 批准号:
    273176511
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Solution-Processed, Air-stable, and High-Cutoff Frequency Organic Transistors for Wireless Communication Systems
用于无线通信系统的溶液处理、空气稳定、高截止频率有机晶体管
  • 批准号:
    273177482
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Herstellung ausgedehnter Felder von Transistoren auf Basis organischer Einkristalle
基于有机单晶的晶体管扩展领域的生产
  • 批准号:
    5454758
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了