Record-High Organic Device Performance enabled by Polymorphism in Organic Semiconductors

有机半导体多态性实现创纪录的有机器件性能

基本信息

项目摘要

Recent developments in thin film processing methods for organic semiconductors have allowed the stabilization of non-equilibrium polymorphs with drastically better electrical device performance. These advances highlight the importance of controlling polymorphism to maximize the performance of a given material. However, so far there is no way to predict for which materials polymorphism can be expected and what electrical performance the different polymorphs can deliver. As a likely result, many materials, both existing and yet to be synthesized, have been or will be declared poorly performing in devices simply because they are not processed in a way that produces films of the (unknown) high-performance polymorph(s). In order to remedy this situation, we propose to develop a theoretical framework to predict polymorphism in small molecule organic semiconductors and to rank potential polymorphs based on their predicted electrical properties. In a complementary effort, we will employ a special printing method to detect and stabilize polymorphic forms of soluble organic materials in printed thin films, which will provide the very necessary experimental benchmarks and calibration references to the to-be-developed theory. Various experimental tools will be used to precisely determine the molecular packing in the printed films thus providing valuable feedback to theory.The theoretical approach will establish a direct link between molecular structure and electrical performance by considering many different polymorphs beyond the one in thermodynamic equilibrium that is usually encountered when employing conventional deposition techniques. The approach creates a whole set of possible structural realizations with expectedly higher carrier mobilities, possibly by orders of magnitude for some of the molecules. In the experimental part, we will test the predictions made by this new theory, especially those that it suggests to be of high technological relevance (high charge carrier mobility). We will use modern deposition techniques to introduce the variability in deposition conditions which is necessary to realize such polymorphs. Materials will be characterized and electronic devices will be analyzed and compared to theory.The proposed device-oriented simulation framework will be developed based on a restricted set of structures but is generally applicable and is a strategic tool that could spark a vast amount of novel high-mobility materials that would otherwise remain undiscovered. This could significantly transform the way of performing material analysis and design and should catalyze the research along the whole chain from synthesis to device measurements.
有机半导体薄膜加工方法的最新发展使得非平衡多晶型物的稳定化具有显著更好的电气器件性能。这些进展突出了控制多晶型以最大化给定材料的性能的重要性。然而,到目前为止,还没有办法预测哪些材料可以预期多晶型以及不同的多晶型可以提供什么样的电性能。因此,许多现有的和尚未合成的材料已经或将被宣布在器械中表现不佳,仅仅是因为它们没有以产生(未知)高性能多晶型物的薄膜的方式进行处理。为了补救这种情况,我们建议开发一个理论框架来预测小分子有机半导体中的多晶型,并根据其预测的电性能对潜在的多晶型进行排名。作为补充,我们将采用一种特殊的印刷方法来检测和稳定印刷薄膜中可溶性有机材料的多晶型,这将为待开发的理论提供非常必要的实验基准和校准参考。各种实验工具将被用来精确地确定在印刷薄膜的分子包装,从而提供有价值的反馈theoretic.The理论方法将建立一个直接的联系,分子结构和电气性能,通过考虑许多不同的多晶型超出了一个在热力学平衡,通常会遇到当采用传统的沉积技术。这种方法创造了一整套可能的结构实现,具有更高的载流子迁移率,可能是一些分子的数量级。在实验部分,我们将测试这个新理论所做的预测,特别是那些它认为具有高技术相关性(高载流子迁移率)的预测。我们将使用现代沉积技术来引入实现这种多晶型所必需的沉积条件的可变性。材料将被表征,电子器件将被分析并与理论进行比较。拟议的面向器件的模拟框架将基于一组有限的结构开发,但通常适用,并且是一种战略工具,可以激发大量的新型高迁移率材料,否则这些材料将无法被发现。这将极大地改变材料分析和设计的方式,并将推动从合成到器件测量的整个链条的研究沿着发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stefan Mannsfeld其他文献

Professor Dr. Stefan Mannsfeld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Stefan Mannsfeld', 18)}}的其他基金

High-frequency modeling and characterization of printed organic crystalline transistors
印刷有机晶体晶体管的高频建模和表征
  • 批准号:
    273176511
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Solution-Processed, Air-stable, and High-Cutoff Frequency Organic Transistors for Wireless Communication Systems
用于无线通信系统的溶液处理、空气稳定、高截止频率有机晶体管
  • 批准号:
    273177482
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Herstellung ausgedehnter Felder von Transistoren auf Basis organischer Einkristalle
基于有机单晶的晶体管扩展领域的生产
  • 批准号:
    5454758
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
Developing pinMOS towards dual channel electrical and optical memory
开发pinMOS以实现双通道电光存储器
  • 批准号:
    515090030
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

The chemistry and device physics of organic solar cells based on non-fullerene acceptors
基于非富勒烯受体的有机太阳能电池的化学和器件物理
  • 批准号:
    2910282
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding and Predicting Molecular Orientations for Organic Optoelectronic Device Applications
了解和预测有机光电器件应用的分子取向
  • 批准号:
    504658-2017
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Improving organic electronic devices through multifunctional additives and device engineering
通过多功能添加剂和器件工程改进有机电子器件
  • 批准号:
    547704-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Organic semiconductor device design considering electrothermal properties toward high current switching
考虑大电流开关电热特性的有机半导体器件设计
  • 批准号:
    22K18795
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The mechanism of structural phase transitions in organic crystals accompanied by crystal crushing and their device applications
有机晶体伴随晶体破碎的结构相变机理及其器件应用
  • 批准号:
    21K05045
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving organic electronic devices through multifunctional additives and device engineering
通过多功能添加剂和器件工程改进有机电子器件
  • 批准号:
    547704-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Improving organic electronic devices through multifunctional additives and device engineering
通过多功能添加剂和器件工程改进有机电子器件
  • 批准号:
    547704-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The project will involve optical and electrical characterisation of organic semiconductors, simulations of device pixels/neural interface and high def
该项目将涉及有机半导体的光学和电学表征、器件像素/神经接口的模拟以及高清
  • 批准号:
    2321608
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Fabrication of Cooperative Multiple Plasmonic Structures Using Metal Nanoparticle-Grating and Their Organic Photo-electronic device Applications
金属纳米颗粒光栅协同多重等离子体结构的制备及其有机光电器件应用
  • 批准号:
    20H02601
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of organic semiconductors based on organic chemistry and device physics: elucidation and utilization of physical properties
基于有机化学和器件物理的有机半导体的开发:物理性质的阐明和利用
  • 批准号:
    20KK0123
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了