Differential operators of gradient type on symmetric spaces and representations of Lie algebras

对称空间上梯度型微分算子及李代数的表示

基本信息

  • 批准号:
    09440002
  • 负责人:
  • 金额:
    $ 8.9万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

The purpose of this project is to study the embeddings of irreducible Harish-Chandra modules into various induced representations of a semisimple Lie group, by using the invariant differential operators of gradient type on certain homogeneous vector bundles over the Riemannian symmetric space. The kernel of such a differential operator realizes the maximal globalization of the dual Harish-Chandra module, and the determination of the embeddings in question is reduced to specifying the equivariant functions in this kernel space.First, the generalized Gelfand-Graev representations form a family of induced modules parametrized by the nilpotent orbits. Concerning the Harish-Chandra modules with highest weights for a simple Lie group of Hermitian type, the generalized Whittaker models associated with the holomorphic nilpotent orbits are specified. Namely, it is shown that each highest weight module embeds, with nonzero and finite multiplicity, into the generalized Gelfand-Graev representation attached to the unique open orbit in its associated variety. As for the unitary highest weight module, the space of the embeddings can be completely described in terms of the principal symbol of the differential operator of gradient type.Second, we consider a simple Lie group of quaternionic type. The 0th n-homology spaces, or equivalently, the embeddings into the principal series, of the Borelde Siebenthal discrete series are described, by using the Schmid differential operator of gradient type. We find in particular that the n-homology space has exactly two exponents if the real rank of the group is not one.Third, the relationship between the multiplicities in the associated cycles and the differential operators of gradient type are clarified for certain Harish-Chandra modules with irreducible associated varieties. The multiplicity can be written down by means of the principal symbol of a gradient type differential operator.
在黎曼对称空间上,利用梯度型不变微分算子在齐次向量束上研究不可约Harish-Chandra模嵌入半单李群的各种诱导表示。该微分算子的核实现了对偶Harish-Chandra模的最大全局化,并将所讨论的嵌入的确定简化为在该核空间中指定等变函数。首先,广义Gelfand-Graev表示形成了由幂零轨道参数化的诱导模族。摘要针对一类简单李群的最重权的Harish-Chandra模,给出了与全纯幂零轨道相关的广义Whittaker模型。也就是说,证明了每个最高权模以非零和有限的多重性嵌入到与唯一开轨道相关变化的广义Gelfand-Graev表示中。对于幺正最高权模,嵌入空间可以完全用梯度型微分算子的主符号来描述。其次,我们考虑一个四元数型的简单李群。利用梯度型的Schmid微分算子,描述了Borelde Siebenthal离散级数的第0个n-同调空间,或等价地,在主级数中的嵌入。我们特别发现,当群的实秩不是1时,n-同调空间恰好有两个指数。第三,明确了一类具有不可约关联变量的Harish-Chandra模的关联环的多重度与梯度型微分算子之间的关系。多重性可以用梯度型微分算子的主符号表示。

项目成果

期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yamashita H.: "Reduced Schur henctions and Littlewood-Richardson coefficients"J.of London Math.Soc.(2). 59・2. 396-406 (1999)
Yamashita H.:“约化 Schur 向量和 Littlewood-Richardson 系数”J.of London Math.Soc.(2) 396-406 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Yamashita: "Associated variety, Kostant-Sekuguchi correspondence, and locally free U(n)-action on Harish-Chandra modules"J. Math. Soc. Japan. 51-No.1. 129-149 (1999)
H. Yamashita:“关联簇、Kostant-Sekuguchi 对应以及 Harish-Chandra 模块上的局部自由 U(n) 作用”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
齋藤睦: "Grobner deformations of regular holonomic systems" Proc.Japan Acad.74・7. 111-113 (1998)
Mutsumi Saito:“正则完整系统的 Grobner 变形”Proc.Japan Acad.74・7(1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Saito: "Hypergeometric polynomials and integer programming"Compositio Math.. 115-No.2. 185-204 (1999)
M. Saito:“超几何多项式和整数规划”Compositio Math.. 115-No.2。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
平井武: "Relations between unitary representations of diffeomorphism groups and those of infinite symmetric group or of related permutation groups" J.Math.Kyoto Univ.37・2. 261-316 (1997)
Takeshi Hirai:“微分同胚群的酉表示与无限对称群或相关排列群的酉表示之间的关系”J.Math.Kyoto Univ.37・2(1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMASHITA Hiroshi其他文献

Numerical study on the extent of flow regulation by collateral circulation of cerebral arteries
脑动脉侧支循环流量调节程度的数值研究
A concept on velocity estimation from magnetic resonance velocity images based on variational optimal boundary control
基于变分最优边界控制的磁共振速度图像速度估计概念
  • DOI:
    10.1299/jbse.22-00050
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    OTANI Tomohiro;YAMASHITA Hiroshi;IWATA Kazuma;ILIK Selin Yavuz;YAMADA Shigeki;WATANABE Yoshiyuki;WADA Shigeo
  • 通讯作者:
    WADA Shigeo

YAMASHITA Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMASHITA Hiroshi', 18)}}的其他基金

Potential new food web route for coral reef ecosystems based on zooxanthellae
基于虫黄藻的珊瑚礁生态系统潜在的新食物网路线
  • 批准号:
    18H02270
  • 财政年份:
    2018
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The relationship between hearing loss and vascular disorders in metabolic syndrome patients
代谢综合征患者听力损失与血管疾病的关系
  • 批准号:
    15K10751
  • 财政年份:
    2015
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Heat Recirculating Type Ultra-micro Combustor with Porous Medium Injector
多孔介质喷射器热循环式超微型燃烧器的研制
  • 批准号:
    25420158
  • 财政年份:
    2013
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The relationship between the metabolic syndrome and presbycusis
代谢综合征与老年性耳聋的关系
  • 批准号:
    24592551
  • 财政年份:
    2012
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discharge pattern of symbiotic zooxanthellae from corals
珊瑚共生虫黄藻的排放模式
  • 批准号:
    23770032
  • 财政年份:
    2011
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Investigation in the pathogenesis of metabolic syndrome with in vivo molecular imaging
体内分子影像研究代谢综合征发病机制
  • 批准号:
    23591298
  • 财政年份:
    2011
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Transformation and Reorganization of Ethnic Religions in the Diaspora with Reference to the dynamism of Hindu and Taoist Ritual Traditions
参考印度教和道教仪式传统的活力,散居海外的民族宗教的转型和重组
  • 批准号:
    22401017
  • 财政年份:
    2010
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
DEVELOPMENT OF NUMERICAL ANALYSIS METHOD BASED ON REACTIVE FLUID MECHANICS FOR INVESTIGATION OF COMBUSTION PHENOMENON IN POROUS MEDIUM
基于反应流体力学研究多孔介质燃烧现象的数值分析方法的发展
  • 批准号:
    22560193
  • 财政年份:
    2010
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric invariants and model theory for singular unitary representations
奇异酉表示的几何不变量和模型理论
  • 批准号:
    22540002
  • 财政年份:
    2010
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Relationship between Aging and Heat Shock Response in the Inner Ear
衰老与内耳热休克反应之间的关系
  • 批准号:
    21592157
  • 财政年份:
    2009
  • 资助金额:
    $ 8.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了