Programming Language Theory Based on Logical Methods

基于逻辑方法的编程语言理论

基本信息

  • 批准号:
    09480058
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

Our purpose of the research was applications of logic, in particular proof-theory, to programming language theory. We especially gave a special attention on linear logic, higher-order term rewriting and type theory. In this research project, we gave a general framework of proof-normalization (and cut-elimination) proofs from the both semantical and syntactical points of view. Then we applied our proof-normalization theorems to give computation models for various new programming languages and formal specification languages. Our new proof-normalization (and cut-elimination) theorems provide(s) logical computation models for various logical programming languages, including strongly-typed functional programming languages, executable algebraic (equational) specification languages, logic programming languages, some of concurrent process calculus languages, and their combinations. In particular, we gave a logical computation model for a combined language of typed lambda calculus with inductive type inferences and with higher order rewritings, which resulted in a new multi-paradigm programming language with both the paradigm of typed functional programming language and the paradigm of algebraic specification language. We also gave computation models for proof-search based-verification systems, including verification systems for concurrent process specification languages and for real-time multi-agent system specification languages.
我们的研究目的是应用逻辑,特别是证明理论,编程语言理论。我们特别关注线性逻辑,高阶项重写和类型论。在这个研究项目中,我们从语义和语法的角度给出了一个一般的证明-规范化(和割-消除)证明的框架。然后,我们应用我们的证明规范化定理,给各种新的编程语言和正式规格说明语言的计算模型。我们新的证明-规范化(和割消)定理为各种逻辑编程语言提供了逻辑计算模型,包括强类型函数编程语言、可执行代数(等式)规范语言、逻辑编程语言、一些并发过程演算语言以及它们的组合。特别地,我们给出了一个逻辑计算模型的组合语言的类型lambda演算与归纳类型推理和高阶重写,这导致了一个新的多范式编程语言的范式的类型函数式编程语言和范式的代数规格说明语言。我们还给出了基于证明搜索的验证系统的计算模型,包括并发过程规范语言和实时多Agent系统规范语言的验证系统。

项目成果

期刊论文数量(50)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Hamano, M. Okada: "A Relationship Among Gentzen'S Proof Reduction, Kirby-Paris Hydra Game and Buchholz's Hydra Game"Mathematical Logic quarterly. 43. 103-120 (1997)
M.Hamano、M. Okada:“Gentzen 证明还原、Kirby-Paris Hydra Game 和 Buchholzs Hydra Game 之间的关系”数理逻辑季刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Nagayama, M. Okada,: "A New Correctness Criterion for the Proof-Nets of Non Commutative Multiplicative Logic"Journal of Symbolic Logic,. to appear. (2000)
M. Nagayama,M. Okada,“非交换乘法逻辑证明网的新正确性标准”符号逻辑杂志,。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Takahashi, M .Okada, M. Dezani: "Special Issue on Theories of Types and Proofs"Theoretical Computer Science. to appear. (2000)
M. Takahashi、M.Okada、M. Dezani:“类型和证明理论特刊”理论计算机科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Hamano-M.Okada: "A Direct Independence Proof of Buhholz's Hydra Game" Archiev for Mathematical Logic. (to appear). (1998)
M.Hamano-M.Okada:《布霍尔茨九头蛇博弈的直接独立性证明》Archiev,数学逻辑。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Okada and P.J.Scott: "A Note on Rewriting Theory for Uniquiness of Iteration"Journal of Theory and Application of Categories. 6. 47-64 (1999)
M. Okada 和 P.J.Scott:“关于迭代唯一性重写理论的注释”范畴理论与应用杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKADA Mitsuhiro其他文献

OKADA Mitsuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKADA Mitsuhiro', 18)}}的其他基金

Visualization of the vascularity of the peripheral nerve by indocyanine green fluorescence angiography and its clinical application for treatment of entrapment neuropathy
吲哚菁绿荧光血管造影显示周围神经血管分布及其治疗卡压性神经病的临床应用
  • 批准号:
    26462247
  • 财政年份:
    2014
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effect of intraneural decompression to peripheral nerve estimated by intraoperative nerve blood flow
通过术中神经血流评估神经内减压对周围神经的影响
  • 批准号:
    23592171
  • 财政年份:
    2011
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interdisciplinary Study in Philosophy of Logic - With a special focus on theory of inferences and proofs of intuitionistic logic
逻辑哲学的跨学科研究 - 特别关注直觉逻辑的推论和证明理论
  • 批准号:
    23520036
  • 财政年份:
    2011
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Astudy on tales of transformation from human beings to animals or plants In China
中国人转变为动物或植物的故事研究
  • 批准号:
    21520366
  • 财政年份:
    2009
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
International collaborative studies on a logical specification and verification language.
逻辑规范和验证语言的国际合作研究。
  • 批准号:
    13558031
  • 财政年份:
    2001
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theory of formal specification and verification of concurrency systems and real-time systems based on linear logic
基于线性逻辑的并发系统和实时系统的形式化说明与验证理论
  • 批准号:
    12480075
  • 财政年份:
    2000
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applications of Type Theory and Linear Logic to Programming Language Theory
类型论和线性逻辑在编程语言理论中的应用
  • 批准号:
    10044094
  • 财政年份:
    1998
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Application of type theory and linear logic for Programming Languages
类型论和线性逻辑在编程语言中的应用
  • 批准号:
    07044093
  • 财政年份:
    1995
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Girard's Linear Logic and its Application
吉拉德的线性逻辑及其应用
  • 批准号:
    07808035
  • 财政年份:
    1995
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of Logic to Programming Language Theory
逻辑在编程语言理论中的应用
  • 批准号:
    05808030
  • 财政年份:
    1993
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Linear logic, finiteness spaces and bicategories
线性逻辑、有限空间和二分类
  • 批准号:
    RGPIN-2022-03900
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
  • 批准号:
    EP/V002325/2
  • 财政年份:
    2022
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Research Grant
Revisiting ordinal notation systems in proof theory: from the viewpoint of linear logic
重新审视证明论中的序数符号系统:从线性逻辑的角度来看
  • 批准号:
    21K12822
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
  • 批准号:
    EP/V002325/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Research Grant
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
  • 批准号:
    EP/V002309/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Research Grant
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
  • 批准号:
    RGPIN-2016-05593
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
  • 批准号:
    RGPIN-2016-05593
  • 财政年份:
    2020
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
  • 批准号:
    RGPIN-2016-05593
  • 财政年份:
    2019
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
  • 批准号:
    RGPIN-2016-05593
  • 财政年份:
    2018
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
  • 批准号:
    RGPIN-2016-05593
  • 财政年份:
    2017
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了