Application of type theory and linear logic for Programming Languages

类型论和线性逻辑在编程语言中的应用

基本信息

  • 批准号:
    07044093
  • 负责人:
  • 金额:
    $ 6.53万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for international Scientific Research
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

Type THeory is provides an ideal formal framework for program verification and systematic program development utililzing the logical mechanism. On the other hand, linear logic provides the framework for expressing computational resources and concurrent computation. Therefore, it seems very promising to combine these two theories in order to design a powerful and new programming language and its program development tools. For this purpose, we have investigated the theoretical foundations for this combined formal framework, linear type language.In particular, we established verious important semantics theories for the linear type language. For example, phase semantics is extended to a dynamic phase semantics in which cut-elimination and normalization proofs can be performed. Phase semantics is also extended to higher order linear type languages. Girard introduced Light Linear Logic, which is considered an impotant sybsystem of linear logic since it characterized the polynomial time computation in a purely logical way. We applied our phase semantics theory to Light Linear Logic and established phase semantic characterization of the important concepts used in Light Linear Logic. The coherence semantics has also been very much improved. For example, Coherence Banach Space Semantics, which is a promising denotational semantics for the linear type language, was developped when the French team leader, J-Y.Girard, visited our group in Japan. Various important computation models for the linear type language have been proposed in our project research. In particular, the reduction paradigm and the proof-search paradigm were studied from the programming paradigm and the proof- search paradigm were studied from the programming languages point of view.
类型理论利用逻辑机制为程序验证和系统程序开发提供了一个理想的形式化框架。另一方面,线性逻辑为表达计算资源和并发计算提供了框架。因此,结合这两种理论来设计一种功能强大的新型编程语言及其程序开发工具似乎是非常有希望的。为此,我们研究了这种组合形式框架——线性类型语言的理论基础。特别是,我们为线性类型语言建立了各种重要的语义学理论。例如,将阶段语义扩展为动态阶段语义,在动态阶段语义中可以进行割消和规范化证明。相语义也扩展到高阶线性类型语言。吉拉德引入了轻线性逻辑,它被认为是线性逻辑的一个重要系统,因为它以纯逻辑的方式表征了多项式时间的计算。我们将相语义理论应用到轻线性逻辑中,建立了轻线性逻辑中重要概念的相语义表征。连贯语义也得到了很大的改进。例如,连贯性巴拿赫空间语义,这是线性类型语言的一个很有前途的指称语义,是由法国团队负责人J-Y。吉拉德在日本拜访了我们的团队。在我们的项目研究中,提出了各种重要的线性类型语言的计算模型。特别地,从编程范式的角度研究了约简范式和证明-搜索范式,从编程语言的角度研究了证明-搜索范式。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Jean-Yves Girard: "Coherent Banach Spaces" Electronic Notes of Theoretical Computer Science. 3. 13 (1996)
Jean-Yves Girard:“相干巴纳赫空间”理论计算机科学电子笔记。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J-Y. Girard(研究協力者Y. Lafont, L. Regnierとの共編): "Advances in Linear Logic" Cambridge University Press, 389 (1996)
J-Y. Girard(与研究合作者 Y. Lafont 和 L. Regnier 共同编辑):《线性逻辑进展》,剑桥大学出版社,389 (1996)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J-Y. Girard 岡田光弘 Andre Scedrov(共編): "Linear Logic, A special issue of Electronic Notes of Theoretical Computer Science" Elsevier-EATCS(オランダ)(欧州理論情報学会), 256 (1996)
J-Y. Girard、Mitsuhiro Okada、Andre Scedrov(联合编辑):“线性逻辑,理论计算机科学电子笔记特刊”Elsevier-EATCS(荷兰)(欧洲理论信息学会),256 (1996)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J-P.Jouannaud 岡田光弘: "Abstract Data Type Systems" Theoretical Computer Science. (近刊). 43- (1997)
J-P.Jouannaud Mitsuhiro Okada:“抽象数据类型系统”理论计算机科学(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Atsushi Ohori: Kyoritsu Tokyo, Tokyo. The Foundations of Programming Language Theory (in Japanese)., 272 (1997)
Atsushi Ohori:共立东京,东京。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKADA Mitsuhiro其他文献

OKADA Mitsuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKADA Mitsuhiro', 18)}}的其他基金

Visualization of the vascularity of the peripheral nerve by indocyanine green fluorescence angiography and its clinical application for treatment of entrapment neuropathy
吲哚菁绿荧光血管造影显示周围神经血管分布及其治疗卡压性神经病的临床应用
  • 批准号:
    26462247
  • 财政年份:
    2014
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effect of intraneural decompression to peripheral nerve estimated by intraoperative nerve blood flow
通过术中神经血流评估神经内减压对周围神经的影响
  • 批准号:
    23592171
  • 财政年份:
    2011
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Interdisciplinary Study in Philosophy of Logic - With a special focus on theory of inferences and proofs of intuitionistic logic
逻辑哲学的跨学科研究 - 特别关注直觉逻辑的推论和证明理论
  • 批准号:
    23520036
  • 财政年份:
    2011
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Astudy on tales of transformation from human beings to animals or plants In China
中国人转变为动物或植物的故事研究
  • 批准号:
    21520366
  • 财政年份:
    2009
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
International collaborative studies on a logical specification and verification language.
逻辑规范和验证语言的国际合作研究。
  • 批准号:
    13558031
  • 财政年份:
    2001
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theory of formal specification and verification of concurrency systems and real-time systems based on linear logic
基于线性逻辑的并发系统和实时系统的形式化说明与验证理论
  • 批准号:
    12480075
  • 财政年份:
    2000
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Applications of Type Theory and Linear Logic to Programming Language Theory
类型论和线性逻辑在编程语言理论中的应用
  • 批准号:
    10044094
  • 财政年份:
    1998
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Programming Language Theory Based on Logical Methods
基于逻辑方法的编程语言理论
  • 批准号:
    09480058
  • 财政年份:
    1997
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Girard's Linear Logic and its Application
吉拉德的线性逻辑及其应用
  • 批准号:
    07808035
  • 财政年份:
    1995
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of Logic to Programming Language Theory
逻辑在编程语言理论中的应用
  • 批准号:
    05808030
  • 财政年份:
    1993
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Linear logic, finiteness spaces and bicategories
线性逻辑、有限空间和二分类
  • 批准号:
    RGPIN-2022-03900
  • 财政年份:
    2022
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Discovery Grants Program - Individual
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
  • 批准号:
    EP/V002325/2
  • 财政年份:
    2022
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Research Grant
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
  • 批准号:
    RGPIN-2016-05593
  • 财政年份:
    2021
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Discovery Grants Program - Individual
Revisiting ordinal notation systems in proof theory: from the viewpoint of linear logic
重新审视证明论中的序数符号系统:从线性逻辑的角度来看
  • 批准号:
    21K12822
  • 财政年份:
    2021
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
  • 批准号:
    EP/V002325/1
  • 财政年份:
    2021
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Research Grant
Monoidal bicategories, linear logic and operads
幺半群二范畴、线性逻辑和操作数
  • 批准号:
    EP/V002309/1
  • 财政年份:
    2021
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Research Grant
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
  • 批准号:
    RGPIN-2016-05593
  • 财政年份:
    2020
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
  • 批准号:
    RGPIN-2016-05593
  • 财政年份:
    2019
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
  • 批准号:
    RGPIN-2016-05593
  • 财政年份:
    2018
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Discovery Grants Program - Individual
Linear Logic, Monoidal Categories and Abstract Models of Differentiation and Integration
线性逻辑、幺半范畴与微分与积分的抽象模型
  • 批准号:
    RGPIN-2016-05593
  • 财政年份:
    2017
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了