Design of BCH-Goppa Decoding Algorithms in Terms of the Tau-functions over Finite Fields

有限域上Tau函数的BCH-Goppa解码算法设计

基本信息

  • 批准号:
    09559011
  • 负责人:
  • 金额:
    $ 4.42万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

In 1997 the following results are given. To decrease the computational complexity of the algorithm based on moment problems introduced by the head of investigator of this project a new decoding algorithm is formulated by using the finite Toda molecule equation over finite fields, namely, the quotient difference algorithm over finite fields It is checked that the algorithm can be successfully applied to various examples including the Goppa code. Secondly, the dynamics of the finite Toda molecule equation over finite fields is considered. There exist conserved quantities and periodic orbits where each period is equal to the order of finite field or its divisor. The periods and the correspondence to the BCH-Goppa decoding are completely classified by the conserved quantities. Moreover, a relationship is discussed between the first component of the eigenvector of the Lax pair of the finite Toda molecule and the value of error appearing the BCH-Goppa code.In 1998, the results obtained in 19 … More 97 are published as a Phys. Lett. A paper entitled "Dynamics of the finite Toda molecule over finite fields and a decoding algorithm". It is shown that the modified KdV (mKdV) equation induces a continued fraction expansion which is different from that given by the Toda molecule. The mKdV equation describes a one-parameter deformation of the orthogonal polynomials named the symmetric Szego polynomials. An integrable discretization of the mKdV equation is found.In 1999, an integrable discretization of the Schur flow is given which is a generalization of the discrete mKdV equation and is corresponding to the general Szego polynomials. Hirota's bilinear form and the tau-function plays the central role. With the help of the discrete Schur flow a new O(N^2) algorithm for computing continued fraction expansions of given Herglotz class functions is designed Moreover, a new algorithm for solving algebraic equations is formulated by the discrete mKdV equation, which will be published in Inverse Problems. Less
1997年的结果如下:为了降低基于本项目负责人介绍的矩问题的译码算法的计算复杂度,利用有限域上有限Toda分子方程,提出了一种新的译码算法,即有限域上的商差算法,该算法可以成功地应用于包括Goppa码在内的各种实例。其次,考虑了有限Toda分子方程在有限场上的动力学性质。存在守恒量和周期轨道,其中每个周期等于有限域的阶数或它的除数。周期和与BCH-Goppa解码的对应关系由守恒量完全分类。此外,还讨论了有限Toda分子的Lax对的特征向量第一分量与出现BCH-Goppa码的误差值之间的关系。1998年,在19…中获得的结果,还有97个以物理学的形式发表。列托人。论文题目为“有限域上有限Toda分子的动力学和解码算法”。结果表明,修正后的KdV (mKdV)方程引起了与Toda分子不同的连分数展开。mKdV方程描述了一种称为对称Szego多项式的正交多项式的单参数变形。建立了mKdV方程的可积离散化。1999年,给出了舒尔流的可积离散化,它是离散mKdV方程的推广,与一般的Szego多项式相对应。Hirota的双线性形式和tau函数起着核心作用。利用离散Schur流,设计了一种计算给定Herglotz类函数的连分式展开式的O(N^2)新算法,并利用离散mKdV方程建立了求解代数方程的新算法,该算法将发表在《逆问题》杂志上。少

项目成果

期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K. Kondo, Y. Nakamura: "An extension of Steffensen's iteration and its cpmputational complexity"Interdiscip. Inform. Sci.. 4. 129-138 (1998)
K. Kondo、Y. Nakamura:“Steffensen 迭代及其计算复杂性的扩展”跨学科。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A. Mukaihira and Y. Nakamura: "Integrable discretization of the modified KdV equation and applications"Inverse Problem. (to appear).
A. Mukaihira 和 Y. Nakamura:“改进的 KdV 方程的可积离散化及其应用”反问题。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Imai: "Decording methods derived by integrability" Proceedings of The 20th Symposium on Information Theory and Its Applications. 157-160 (1997)
J.Imai:“可积性导出的解码方法”第20届信息论及其应用研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Nakamura,A.Mukaihira: "Dynamics of the finite Toda molecule over finite fields and a decoding algorithm" Physics Letters A. 249. 295-302 (1998)
Y.Nakamura,A.Mukaihira:“有限域上有限户田分子的动力学和解码算法”《物理快报》A. 249. 295-302 (1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
中村佳正: "ソリトン理論と数値計算法" 電子情報通信学会誌. 80巻11号. 1143-1146 (1997)
中村义正:“孤子理论和数值计算方法”,电子信息通信工程师学会学报,第 80 卷,第 1143-1146 期(1997 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAMURA Yoshimasa其他文献

細菌におけるセレンのタンパク質間デリバリー
细菌中硒的蛋白质间传递
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    WU Hongyan;NAKAMURA Toshiyuki;NAKAMURA Yoshimasa;長岡恒平・杉山慶太・鈴鹿明広・藤野介延・志村華子;三原久明
  • 通讯作者:
    三原久明
PREDOMINANT RICE PHYTOCHEMICALS AND THEIR DISEASE-PREVENTIVE EFFECTS
水稻的主要植物化学物质及其防病作用
RING FISSION CATABOLITES OF QUERCETIN GLYCOSIDES
槲皮素苷的环裂变分解代谢物
イネのCl-蓄積と耐塩性との関係
水稻Cl-积累与耐盐性的关系
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    LI Kexin;NAKAMURA Toshiyuki;NAKAMURA Yoshimasa;平井儀彦
  • 通讯作者:
    平井儀彦
スイカにおける単為結実関連遺伝子の経時的解析及び遺伝子導入法の検討
西瓜单性结实相关基因时程分析及基因导入方法研究
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    WU Hongyan;NAKAMURA Toshiyuki;NAKAMURA Yoshimasa;長岡恒平・杉山慶太・鈴鹿明広・藤野介延・志村華子
  • 通讯作者:
    長岡恒平・杉山慶太・鈴鹿明広・藤野介延・志村華子

NAKAMURA Yoshimasa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAMURA Yoshimasa', 18)}}的其他基金

Constitutive and structural changes of membrane microdomains and lipid accumulation control by food chemicals
膜微区的组成和结构变化以及食品化学品对脂质积累的控制
  • 批准号:
    16K14928
  • 财政年份:
    2016
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
A Challenge to Relative Errors by Numerical Algorithms with Positivity
积极的数值算法对相对误差的挑战
  • 批准号:
    23654032
  • 财政年份:
    2011
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of a new probe of a flavonoid metabolite, DOPAC, for understanding the biomolecule modification
开发黄酮类代谢物 DOPAC 的新探针,用于了解生物分子修饰
  • 批准号:
    22580129
  • 财政年份:
    2010
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Innovative Library for Singular Value Decomposition Suited to Multi-Core Processors
适合多核处理器的奇异值分解创新库的开发
  • 批准号:
    20246027
  • 财政年份:
    2008
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of innovative numerical integrators which preserving all of the conserved quantities
开发保留所有守恒量的创新数值积分器
  • 批准号:
    15340030
  • 财政年份:
    2003
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Continued fraction expansions in terms of discrete integrable systems and their applications to systems identifications and the BCH-Goppa decoding
离散可积系统及其在系统识别和 BCH-Goppa 解码中的应用方面的持续分数展开
  • 批准号:
    12554004
  • 财政年份:
    2000
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research of Algorithms in terms of Information Geometry Structure and Discrete Time Integrable Systems
信息几何结构与离散时间可积系统的算法研究
  • 批准号:
    12440025
  • 财政年份:
    2000
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Discrete-Time Integrable Systems and Numerical Algorithms
离散时间可积系统和数值算法
  • 批准号:
    09440077
  • 财政年份:
    1997
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了