Continued fraction expansions in terms of discrete integrable systems and their applications to systems identifications and the BCH-Goppa decoding

离散可积系统及其在系统识别和 BCH-Goppa 解码中的应用方面的持续分数展开

基本信息

项目摘要

There has not been known a continued fraction expansion of order O(N^2) for the Perron continued fraction, which emerges in the Carathe\'odory interpolation problem, such as the qd algorithm for the Chebyshev continued fraction. First Nakamura and coworkers, being based on the orthogonal polynomials on the unit circle, derived a new integrable system named the Schur flow which has a Lax representation given by the three terms recurrence relation. Secondly in terms of the discrete Schur flow they designed a new continued fraction expansion algorithm of order O(N^2) for the Perron continued fraction and its application to algorithm for computing zeros of certain algebraic equations. Consequently, the new correspondence1)classical orthogonal polynomials -Chebyshev continued fraction -Toda equation2)orthogonal polynomials on the unit circle -Perron continued fraction -Schur flowis revealed.They also considered the Thron continued fraction through the relativistic Toda equation having a Lax representation given by the three terms recurrence relation for the bi-orthogonal polynomials. An integrable discretization of the equation enable them to design a new continued fraction algorithm of order O(N^3) for the Thron fraction. This algorithm has an advantage that it computes the continued fraction for the case where the FG algorithm does not work.Nakamura showed that a Pad\'e approximation, namely, a continued fraction expansion of the Laplace transform of the Airy function can be computed in a pure algebraic manner.Each coefficients of the continued fraction is connected by the By\"acklund transformation of the second Painlev\'e equation PII, where one of the Lax pair is just the recurrence relation of orthogonal polynomials.
对于Perron连分式,还没有已知的O(N^2)阶的连分式展开式,其出现在Caribe 'odory插值问题中,例如Chebyshev连分式的qd算法。首先,中村等人基于单位圆上的正交多项式,导出了一个新的可积系统Schur流,它具有由三项递推关系给出的Lax表示。其次,利用离散Schur流,设计了Perron连分式的O(N^2)阶连分式展开算法,并将其应用于求解某些代数方程组的零点。从而揭示了1)经典正交多项式-Chebyshev连分式-户田方程2)单位圆上的正交多项式-Perron连分式-Schur流的新对应关系,并通过相对论性户田方程考虑了Thron连分式,该方程具有由双正交多项式的三项递推关系给出的Lax表示.一个可积的离散方程使他们能够设计一个新的连续分数算法的顺序为O(N^3)的Thron分数。该算法的优点在于,它计算FG算法不工作的情况下的连分数。中村表明,可以以纯代数的方式计算Pad\“e近似,即Airy函数的拉普拉斯变换的连分数展开。连分数的每个系数由第二Painlev\”e方程PII的By\“acklund变换连接,其中Lax对之一就是正交多项式的递推关系。

项目成果

期刊论文数量(106)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
中山功(I.Nakayama): "誤差関数の評価不等式(Estimating Inequalities for the Error Function)"NUCB Journal of Economics and Information Science(名古屋商科大学論集). Vol.48. 89-100 (2003)
I. Nakayama:“估计误差函数的不等式”NUCB 经济与信息科学杂志(名古屋商业大学)第 48 卷 89-100(2003 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Louboutin, R.Okazaki: "Exponents of the ideal class groups of CM number fields"Math.Z.. Vol.243. 155-159 (2003)
S.Louboutin、R.Okazaki:“CM 数域的理想类群的指数”Math.Z.. Vol.243。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.Okazaki: "Geometry of a cubic Thue equation"Publ. Math. Debrecen. Vol.61. 267-314 (2002)
R.Okazaki:“三次Thue方程的几何”Publ。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Mukaihira, Y.Nakamura: "Schur flow for orthogonal polynomials on the unit circle and its integrable discretization"Journal of Computational and Applied Mathematics. Vol.139. 75-94 (2002)
A.Mukaihira、Y.Nakamura:“单位圆上正交多项式的 Schur 流及其可积离散化”计算与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Minesaki, Y.Nakamura: "A conservative numerical integration algorithm for the integrable Henon-Heiles system"Proceedings of Institute of Mathematics of NAS of Ukraine, Institute of Mathematics, Kyiv. Vol.I. 444-449 (2004)
Y.Minesaki,Y.Nakamura:“可积 Henon-Heiles 系统的保守数值积分算法”乌克兰国家科学院数学研究所论文集,基辅数学研究所。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAMURA Yoshimasa其他文献

細菌におけるセレンのタンパク質間デリバリー
细菌中硒的蛋白质间传递
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    WU Hongyan;NAKAMURA Toshiyuki;NAKAMURA Yoshimasa;長岡恒平・杉山慶太・鈴鹿明広・藤野介延・志村華子;三原久明
  • 通讯作者:
    三原久明
PREDOMINANT RICE PHYTOCHEMICALS AND THEIR DISEASE-PREVENTIVE EFFECTS
水稻的主要植物化学物质及其防病作用
RING FISSION CATABOLITES OF QUERCETIN GLYCOSIDES
槲皮素苷的环裂变分解代谢物
イネのCl-蓄積と耐塩性との関係
水稻Cl-积累与耐盐性的关系
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    LI Kexin;NAKAMURA Toshiyuki;NAKAMURA Yoshimasa;平井儀彦
  • 通讯作者:
    平井儀彦
スイカにおける単為結実関連遺伝子の経時的解析及び遺伝子導入法の検討
西瓜单性结实相关基因时程分析及基因导入方法研究
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    WU Hongyan;NAKAMURA Toshiyuki;NAKAMURA Yoshimasa;長岡恒平・杉山慶太・鈴鹿明広・藤野介延・志村華子
  • 通讯作者:
    長岡恒平・杉山慶太・鈴鹿明広・藤野介延・志村華子

NAKAMURA Yoshimasa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAMURA Yoshimasa', 18)}}的其他基金

Constitutive and structural changes of membrane microdomains and lipid accumulation control by food chemicals
膜微区的组成和结构变化以及食品化学品对脂质积累的控制
  • 批准号:
    16K14928
  • 财政年份:
    2016
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
A Challenge to Relative Errors by Numerical Algorithms with Positivity
积极的数值算法对相对误差的挑战
  • 批准号:
    23654032
  • 财政年份:
    2011
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Development of a new probe of a flavonoid metabolite, DOPAC, for understanding the biomolecule modification
开发黄酮类代谢物 DOPAC 的新探针,用于了解生物分子修饰
  • 批准号:
    22580129
  • 财政年份:
    2010
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Innovative Library for Singular Value Decomposition Suited to Multi-Core Processors
适合多核处理器的奇异值分解创新库的开发
  • 批准号:
    20246027
  • 财政年份:
    2008
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of innovative numerical integrators which preserving all of the conserved quantities
开发保留所有守恒量的创新数值积分器
  • 批准号:
    15340030
  • 财政年份:
    2003
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research of Algorithms in terms of Information Geometry Structure and Discrete Time Integrable Systems
信息几何结构与离散时间可积系统的算法研究
  • 批准号:
    12440025
  • 财政年份:
    2000
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Discrete-Time Integrable Systems and Numerical Algorithms
离散时间可积系统和数值算法
  • 批准号:
    09440077
  • 财政年份:
    1997
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Design of BCH-Goppa Decoding Algorithms in Terms of the Tau-functions over Finite Fields
有限域上Tau函数的BCH-Goppa解码算法设计
  • 批准号:
    09559011
  • 财政年份:
    1997
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
  • 批准号:
    EP/W014882/2
  • 财政年份:
    2023
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Research Grant
Algebraic complexity theory via the algebraic geometry and representation theory of generalised continued fractions
通过代数几何和广义连分数表示论的代数复杂性理论
  • 批准号:
    EP/W014882/1
  • 财政年份:
    2022
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Research Grant
Continued fractions applied to special functions
连分数应用于特殊函数
  • 批准号:
    552347-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 4.67万
  • 项目类别:
    University Undergraduate Student Research Awards
Elliptic curves and continued fractions.
椭圆曲线和连分数。
  • 批准号:
    541314-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 4.67万
  • 项目类别:
    University Undergraduate Student Research Awards
Studies on invariants of fibrations of curves and multidimensional continued fractions related to singularities
曲线纤维振动不变量和与奇点相关的多维连续分数的研究
  • 批准号:
    16K05104
  • 财政年份:
    2016
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of real quadratic fields by using continued fractions
使用连分数研究实二次域
  • 批准号:
    15K04779
  • 财政年份:
    2015
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analytic, Algebraic and Combinatorial studies on continued fractions
连分数的解析、代数和组合研究
  • 批准号:
    22540005
  • 财政年份:
    2010
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of continued fractions to real quadratic fields
连分数在实二次域中的应用
  • 批准号:
    22540030
  • 财政年份:
    2010
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of continued fractions and Pade approximants to nonlinear wave equations
连分数和 Pade 近似在非线性波动方程中的应用
  • 批准号:
    138591-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of continued fractions and Pade approximants to nonlinear wave equations
连分数和 Pade 近似在非线性波动方程中的应用
  • 批准号:
    138591-2004
  • 财政年份:
    2006
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了