Three-dimensional vortices and their instability in a geophysical flow-A quasigeostrophic vortex-turbulence model-
地球物理流中的三维涡旋及其不稳定性-准地转涡旋-湍流模型-
基本信息
- 批准号:09640522
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) A series of exact solution of the quasigeostrophic equation is obtained, which corresponds to a volume of ellipsoidal vortex of constant potential vorticity embedded in a uniform strain field with a uniform background vorticity. The linear instability is investigated by expanding disturbances in terms of Lame functions (MIYAZAKI).(2) A series of exact solution of the quasigeostrophic equation is obtained. which corresponds to a tilted volume of spheroidal vortex of constant potential vorticity. It rotates steadily about the vertical axis. The angular velocity is a function of the aspect ratio and does not depend on the inclination angle. The linear instability is investigated by expanding disturbances in terms of Legendre functions. A prolate spheroid is shown to be stable if its inclination angle is small and its aspect ratio is not large (close to unity). In contrast, an oblate spheroid is destabilized by resonance phenomena even if its inclination is very small (nearly vertical) (MIYAZAKI).(3) A wire-vortex turbulnece model is developed by incoorprating chaotic interactions between vortices and their merger. Pseudo-turbulence simulations are performed based on this model (MIYAZAKI).(4) It is shown that the statistical properties. such as the number of vortices and their spacing. are in good accordance with those obtained in the direct numerical simulations, which were performed on NEC-SX4 using the spectral code (2563) (HANAZAKI).
(1)得到了准地转方程的一系列精确解,对应于在具有均匀背景涡量的均匀应变场中嵌入一定体积的等位涡量椭球体涡。用Lame函数(MIYAZAKI)展开扰动研究了线性不稳定性。(2)得到了拟等转方程的一系列精确解。这相当于一个倾斜体积的等位涡球体。它沿垂直轴稳定地旋转。角速度是纵横比的函数,与倾角无关。用勒让德函数展开扰动研究了线性不稳定性。长形球体在倾角较小且长径比不大(接近于一)的情况下是稳定的。相比之下,一个扁圆球体即使其倾角很小(接近垂直)也会被共振现象破坏(MIYAZAKI)。(3)将涡旋之间的混沌相互作用及其合并考虑在内,建立了线涡湍流模型。基于该模型进行了伪湍流模拟(MIYAZAKI)。(4)结果表明:比如漩涡的数量和它们的间距。与利用谱码(2563)(HANAZAKI)在NEC-SX4上进行的直接数值模拟结果吻合较好。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Saito and T.Miyazaki: "Shape and stability of a bubble in Rankine's combined vortex, (in Japanese)" Nagare. 17 (6). 432-443 (1988)
H.Saito 和 T.Miyazaki:“兰金组合涡中气泡的形状和稳定性,(日语)”Nagare。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Miyazaki: "Short-wavelength instabilities of waves in rotating stratified flaxds" Phys.Fluids. 10・12. 3168-3177 (1998)
T.Miyazaki:“旋转分层亚麻中波的短波长不稳定性”Phys.Fluids 10・12 3168-3177(1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Miyazaki, K.Hirahara, H.Hanazaki: "The quasi-three-dimensional instability of an elliptical vortex subject to a strain field in a rotating stratified fluid" Fluid Dynamics Research. 21 (5). 359-380 (1997)
T.Miyazaki、K.Hirahara、H.Hanazaki:“椭圆涡旋在旋转分层流体中受到应变场的准三维不稳定性”流体动力学研究。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Miyazaki, K.Adachi: "Short-wavelength instabilities of waves in rotating stratified fluids" Phys.Fluids. 10 (12). 3168-3177 (1988)
T.Miyazaki、K.Adachi:“旋转分层流体中波的短波长不稳定性”Phys.Fluids。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
斉藤秀亮,宮嵜 武: "Parkine結合渦中の気泡の形状と安定性" ながれ. 17(6). 432-443 (1998)
Hideaki Saito,Takeshi Miyazaki:“耦合 Parkine 涡流中气泡的形状和稳定性”Nagare 17(6) (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MIYAZAKI Takeshi其他文献
MIYAZAKI Takeshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MIYAZAKI Takeshi', 18)}}的其他基金
The inhibition effects of the Kynurenine pathway on brain tumor stem cells and its niche.
犬尿氨酸通路对脑肿瘤干细胞及其生态位的抑制作用。
- 批准号:
23791601 - 财政年份:2011
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Empirical study on the theoretical model of municipal consolidation
城市整治理论模型实证研究
- 批准号:
22730256 - 财政年份:2010
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The practical research in how schools explain student's activitiesto stakeholders; development of a community partner questionnaire.
关于学校如何向利益相关者解释学生活动的实践研究;
- 批准号:
22531033 - 财政年份:2010
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vortex Dynamics and Scalar Transport in Rotating Stratified Turbulence-Construction of a ‘Vortex-Wave based Turbulence Model'-
旋转分层湍流中的涡动力学和标量输运-“基于涡流波的湍流模型”的构建-
- 批准号:
15540365 - 财政年份:2003
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamics and Statistics of Worms around a Calumnar Vortex
周涡周围蠕虫的动力学和统计
- 批准号:
12640387 - 财政年份:2000
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Empirical Study on the Regional Revitalization by Rural Tourism
乡村旅游带动区域振兴的实证研究
- 批准号:
09660247 - 财政年份:1997
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Study on Unstable Structure of Three-dimensional Vortices and its Oscillation induced by Cavitation Interaction
三维涡旋不稳定结构及其空化作用引起的振荡研究
- 批准号:
17360081 - 财政年份:2005
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Effects of Rotation and Stratification on Three-Dimensional Vortices
旋转和分层对三维涡旋的影响
- 批准号:
9730843 - 财政年份:1998
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant














{{item.name}}会员




