Deep Transfer Learning in Remote Sensing
遥感深度迁移学习
基本信息
- 批准号:519016653
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project addresses knowledge transfer in Remote Sensing (RS) from an annotation-rich source domain to an annotation-scarce target domain by reducing their semantic discrepancy (domain shift), helping the latter and its follow-up applications without the need of numerous manually-labeled data. Specifically, the goal of the project is to design a universal deep Transfer Learning (TL) framework for RS data, named as deep RS-TL framework. Within this framework, on the one hand, we will develop several core deep TL algorithms to tackle several fundamental challenges of transferring knowledge in remote sensing, including source-target alignment, multi-temporal adaptation, multi-source adaptation, multi-scale adaptation, spatial-spectral adaptation, cross-task TL, cross-modality TL between source and target domain. On the other hand, we will construct an intelligent RS imagery annotation software which integrates all developed algorithms, to achieve flexible, personal and intelligent annotation for more efficient RS label collection. As a result, the anticipated deep RS-TL framework will considerably facilitate the practical applications of machine learning in remote sensing by relaxing its heavy dependence on laboriously labeled data.
该项目解决了遥感(RS)中的知识转移,从一个注释丰富的源域到一个注释稀缺的目标域,通过减少它们的语义差异(域转移),帮助后者及其后续应用,而不需要大量的手动标记的数据。具体来说,该项目的目标是为RS数据设计一个通用的深度迁移学习(TL)框架,称为深度RS-TL框架。 在此框架下,一方面,我们将开发几个核心的深度TL算法来解决遥感知识转移的几个基本挑战,包括源目标对齐,多时相适应,多源适应,多尺度适应,空间光谱适应,跨任务TL,源和目标域之间的跨模态TL。另一方面,我们将构建一个智能化的遥感影像标注软件,集成了所有开发的算法,实现灵活,个性化和智能化的注释,更有效的遥感标签收集。因此,预期的深度RS-TL框架将大大促进机器学习在遥感中的实际应用,放松其对费力标记数据的严重依赖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr.-Ing. Xiaoxiang Zhu其他文献
Professorin Dr.-Ing. Xiaoxiang Zhu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of an sEMG-based Human-Computer Interface Utilizing Deep Transfer Learning and Continual Learning
利用深度迁移学习和持续学习开发基于表面肌电图的人机界面
- 批准号:
23H03445 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Early Alzheimers Forecasting from Multimodal Data via Deep Transfer Learning, Evaluated on a Large-Scale Prospective Cohort Study
通过深度迁移学习从多模式数据预测早期阿尔茨海默病,并在大规模前瞻性队列研究中进行评估
- 批准号:
10732306 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Learn, transfer, generate: Developing novel deep learning models for enhancing robustness and accuracy of small-scale single-cell RNA sequencing studies
学习、转移、生成:开发新颖的深度学习模型,以增强小规模单细胞 RNA 测序研究的稳健性和准确性
- 批准号:
10535708 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deep Transfer Learning from Data for Operational Excellence in Refineries
从数据中进行深度迁移学习以实现炼油厂的卓越运营
- 批准号:
556066-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alliance Grants
A deep-transfer-learning framework to transfer clinical information to single cells and spatial locations in cancer tissues
一种深度迁移学习框架,可将临床信息转移到癌症组织中的单细胞和空间位置
- 批准号:
10424763 - 财政年份:2022
- 资助金额:
-- - 项目类别:
A deep-transfer-learning framework to transfer clinical information to single cells and spatial locations in cancer tissues
一种深度迁移学习框架,可将临床信息转移到癌症组织中的单细胞和空间位置
- 批准号:
10657426 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Deep Transfer Learning from Data for Operational Excellence in Refineries
从数据中进行深度迁移学习以实现炼油厂的卓越运营
- 批准号:
556066-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Alliance Grants
Adaptive dynamic coordination of damping controllers through deep reinforcement and transfer learning
通过深度强化和迁移学习实现阻尼控制器的自适应动态协调
- 批准号:
2033910 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Standard Grant
Transfer Learning for Deep Neural Networks Applied to Plant Breeding
应用于植物育种的深度神经网络的迁移学习
- 批准号:
551582-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards
Deep Transfer Learning from Data for Operational Excellence in Refineries
从数据中进行深度迁移学习以实现炼油厂的卓越运营
- 批准号:
556066-2020 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Alliance Grants














{{item.name}}会员




