Understanding the Structural Dynamics of Polarons in Transition Metal Oxide Semiconductors by Vibrational Spectroscopy and Charge-Carrier Mobilities

通过振动光谱和载流子迁移率了解过渡金属氧化物半导体中极化子的结构动力学

基本信息

  • 批准号:
    519139248
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    WBP Fellowship
  • 财政年份:
  • 资助国家:
    德国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The generation of solar fuels by photocatalysis or photoelectrochemistry is certainly one of the most important and promising technological processes nowadays. Especially photocatalytic water splitting, where water is separated into gaseous oxygen and hydrogen, attracted a wide interest recently because it is envisaged as a key technology for energy storage. Remarkably, there is yet no photocatalyst available which can split water economically, despite the vast efforts in research over the last decades. One class of materials which can be used to drive photocatalytic water splitting are transition metal oxides. These oxides are semiconductors, where an electron is excited from the valence to the conduction band when a photon is absorbed. Thereby charge separation occurs and the resulting free electron and the electron hole can be used individually as reducing or oxidizing agent, respectively. These charge carriers are often trapped in transition metal oxides since they form polarons, where the atoms in the surrounding of the charge displace and thus create a potential minimum. When it comes to characterizing polaronic states on an atomistic level, theoretical methods are inevitable. However, such electronic structure calculations, which are usually based on hybrid DFT, can be ambiguous such that the exact geometry of a polaron significantly (and even qualitatively) depends on the chosen functional. Dynamically relevant properties, such as mobilities or electron transfer rate constants, obviously depend on the geometry of the polaron. A detailed knowledge of the exact polaronic structure is therefore crucial for following research projects. In this project, I propose an advanced theoretical simulation study of polaronic states in BiVO4 which is a leading candidate for efficient photocatalytic water splitting. Ab initio molecular dynamics simulations on the hybrid DFT level of theory are to be conducted of the hole polaron in BiVO4. From these simulations, vibrational spectra (IR and Raman) and charge-carrier mobilities are to be calculated. All simulations, including the calculation of the vibrational spectra, will be accelerated by machine learning which is absolutely necessary to obtain statistically converged data. Collaborations with renowned experimentalists are arranged, who will measure the corresponding vibrational spectra and mobilities. The aim of this project therefore is, to provide a benchmark for the electronic structure theory; in this case to definitively identify the correct electron hole polaron geometry in BiVO4, but the applied methods are transferable to any other metal oxide material as well. From the joint theoretical/experimental data, I will moreover gain a detailed understanding of the structural dynamics of the electron hole polaron in BiVO4. This could be of significant value to the community seeking to optimise solar-to-fuel conversion technologies as part of a low-carbon energy system.
利用太阳能电池或光电化学产生太阳能燃料无疑是当今最重要和最有前途的技术方法之一。特别是光催化水分解,其中水被分离成气态氧和氢气,最近引起了广泛的兴趣,因为它被设想为能量存储的关键技术。值得注意的是,尽管过去几十年在研究方面付出了巨大的努力,但仍然没有可以经济地分解水的光催化剂。可用于驱动光催化水分解的一类材料是过渡金属氧化物。这些氧化物是半导体,其中当光子被吸收时,电子从价带被激发到导带。由此发生电荷分离,并且所产生的自由电子和电子空穴可以分别单独地用作还原剂或氧化剂。这些电荷载流子通常被捕获在过渡金属氧化物中,因为它们形成极化子,其中电荷周围的原子发生位移,从而产生电势最小值。当涉及到在原子水平上表征极化子态时,理论方法是不可避免的。然而,这样的电子结构计算,这通常是基于混合DFT,可以是模糊的,使得极化子的确切几何形状显着(甚至定性)取决于所选择的功能。动力学相关的性质,如迁移率或电子转移速率常数,显然取决于极化子的几何形状。因此,详细了解确切的极化子结构对于以下研究项目至关重要。在这个项目中,我提出了一个先进的理论模拟研究的极化态BiVO 4,这是一个领先的候选人,有效的光催化分解水。在混合密度泛函理论水平上对BiVO 4中的空穴极化子进行了从头算分子动力学模拟。根据这些模拟,计算振动光谱(IR和拉曼)和电荷载流子迁移率。所有模拟,包括振动光谱的计算,都将通过机器学习来加速,这对于获得统计收敛的数据是绝对必要的。 与著名的实验学家合作安排,谁将测量相应的振动光谱和迁移率。因此,该项目的目的是为电子结构理论提供基准;在这种情况下,明确确定BiVO 4中正确的电子空穴极化子几何形状,但所应用的方法也可以转移到任何其他金属氧化物材料。从联合的理论/实验数据,我还将获得详细的了解BiVO 4中的电子空穴极化子的结构动力学。这对于寻求优化太阳能燃料转换技术作为低碳能源系统一部分的社区可能具有重要价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Philipp Schienbein其他文献

Dr. Philipp Schienbein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Philipp Schienbein', 18)}}的其他基金

Solvation and Charge Transfer Processes at Semiconductor/Liquid Water Interfaces
半导体/液态水界面的溶剂化和电荷转移过程
  • 批准号:
    445292952
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    WBP Fellowship

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Understanding mechanism of action: Combined computational and structural biology studies to determine small molecule effects on protein dynamics and function
了解作用机制:结合计算和结构生物学研究来确定小分子对蛋白质动力学和功能的影响
  • 批准号:
    555689-2020
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Understanding mechanism of action: Combined computational and structural biology studies to determine small molecule effects on protein dynamics and function
了解作用机制:结合计算和结构生物学研究来确定小分子对蛋白质动力学和功能的影响
  • 批准号:
    555689-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Understanding mechanism of action: Combined computational and structural biology studies to determine small molecule effects on protein dynamics and function
了解作用机制:结合计算和结构生物学研究来确定小分子对蛋白质动力学和功能的影响
  • 批准号:
    555689-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
  • 批准号:
    10178044
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
  • 批准号:
    10594464
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
  • 批准号:
    10379462
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
Understanding the structural basis of T cell receptor (TCR) and preTCR mechanosensing: single molecule, NMR and molecular dynamics studies
了解 T 细胞受体 (TCR) 和 preTCR 机械传感的结构基础:单分子、NMR 和分子动力学研究
  • 批准号:
    10406149
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Ultrafast Dynamics of Ionic Liquids: Understanding of Molecular Level Aspects of Transition from Intermolecular Vibration to Structural Relaxation
离子液体的超快动力学:理解从分子间振动到结构弛豫转变的分子水平
  • 批准号:
    18J12979
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Understanding the structural basis of T cell receptor (TCR) and preTCR mechanosensing: single molecule, NMR and molecular dynamics studies
了解 T 细胞受体 (TCR) 和 preTCR 机械传感的结构基础:单分子、NMR 和分子动力学研究
  • 批准号:
    10153682
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Understanding dynamics of the actin filament using cryoEM and structural determination from a small number of images
使用冷冻电镜了解肌动蛋白丝的动力学并从少量图像中确定结构
  • 批准号:
    18H02410
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了