Solvation and Charge Transfer Processes at Semiconductor/Liquid Water Interfaces

半导体/液态水界面的溶剂化和电荷转移过程

基本信息

项目摘要

Interfaces between metal oxides and liquid water play a crucial role for numerous systems ranging from heterogeneous catalysis to biological processes. Especially important are charge transfer processes across the interface because the metal oxide is able to catalyze reactions which occur in the adjacent liquid phase. A promising application is photocatalytic water splitting into hydrogen and oxygen. During this process, photons are absorbed by the metal oxide and the gained energy is used to split water at its surface. The process can thus be utilized to generate carbon-neutral fuel. Despite its relevance there is only little information about the exact molecular processes at the interface. For example, it is especially interesting how water molecules interact with the oxide in detail as well as how and where charges are localized at the interface. Those questions can be addressed using methods of computational chemistry, in particular ab initio molecular dynamics~(AIMD). These methods are able to realistically model the structural dynamics of an oxide/water interface at the atomistic level. Still, the simulations are challenging, even for modern high-performance computers, since the electronic structure of oxide/water interfaces is highly complex. Therefore, “machine learning” approaches are to be used in this project to accelerate the AIMD simulations. The ultimate goal of the project is to gain a deep understanding of microscopic properties, such as structure, dynamics and reactivity of liquid water and charge carriers at a given metal oxide surface. Here, WO3 is chosen as the model system being a promising material to act as a photoactive electrode for the oxygen evolution reaction. The obtained insights on the WO3/water interface are then to be generalized to predict properties of other metal oxide/water interfaces. Moreover, the AIMD simulations complement existing experimental data and are also an integral contribution to understand experiments at the microscopic level.
金属氧化物和液态水之间的界面在从多相催化到生物过程的许多系统中起着至关重要的作用。特别重要的是跨界面的电荷转移过程,因为金属氧化物能够催化在相邻液相中发生的反应。一个有前途的应用是光催化水分解成氢和氧。在这个过程中,光子被金属氧化物吸收,获得的能量用于在其表面分解水。因此,该方法可用于产生碳中性燃料。尽管它的相关性,只有很少的信息在界面上的确切分子过程。例如,水分子如何与氧化物详细相互作用以及电荷如何以及在界面处定位是特别有趣的。这些问题可以用计算化学的方法来解决,特别是从头算分子动力学(AIMD)。这些方法能够逼真地模拟氧化物/水界面在原子水平上的结构动力学。尽管如此,即使对于现代高性能计算机来说,模拟也是具有挑战性的,因为氧化物/水界面的电子结构非常复杂。因此,本项目将使用“机器学习”方法来加速AIMD模拟。该项目的最终目标是深入了解微观特性,例如液态水和电荷载体在给定金属氧化物表面的结构,动力学和反应性。在这里,WO 3被选为模型系统是一个有前途的材料作为光活性电极的析氧反应。所获得的见解WO 3/水界面,然后被推广到其他金属氧化物/水界面的预测性能。此外,有源植入式医疗器械模拟补充了现有的实验数据,也是在微观层面理解实验的一个不可或缺的贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Philipp Schienbein其他文献

Dr. Philipp Schienbein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Philipp Schienbein', 18)}}的其他基金

Understanding the Structural Dynamics of Polarons in Transition Metal Oxide Semiconductors by Vibrational Spectroscopy and Charge-Carrier Mobilities
通过振动光谱和载流子迁移率了解过渡金属氧化物半导体中极化子的结构动力学
  • 批准号:
    519139248
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    WBP Fellowship

相似国自然基金

CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
Sema3E在CHARGE综合症中的作用及机制研究
  • 批准号:
    81160144
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

CAS: Proton-Coupled Electron Transfer Reactions from Ligand-to-Metal Charge Transfer Excited States.
CAS:配体到金属电荷转移激发态的质子耦合电子转移反应。
  • 批准号:
    2400727
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ERI: Unravel Charge Transfer Mechanisms in the Bulk and at Interphases and Interfaces of Ionogel Solid Electrolytes for High-Power-Density All-Solid-State Li Metal Batteries
ERI:揭示高功率密度全固态锂金属电池的离子凝胶固体电解质的本体以及相间和界面的电荷转移机制
  • 批准号:
    2347542
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Charge and Energy Transfer Processes at Inorganic-Organic Interfaces
无机-有机界面的电荷和能量转移过程
  • 批准号:
    DE230100382
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Investigation of Long-Range Charge Transfer and Excited State Processes in Biochemical Systems
生化系统中长程电荷转移和激发态过程的研究
  • 批准号:
    10713085
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
RUI: Promoting Through-Space Charge Transfer via Arylene Ethynylene Templates
RUI:通过亚芳基乙炔模板促进空间电荷转移
  • 批准号:
    2303822
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAS-SC: Uncovering Mechanistic Details of Photo-Induced Charge Transfer in Thin Films of Photoactive Materials with In situ and Operando Transient Absorption Spectroscopy
CAS-SC:利用原位和操作瞬态吸收光谱揭示光敏材料薄膜中光致电荷转移的机制细节
  • 批准号:
    2313290
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Supramolecular charge transfer emitters: increasing efficiency in the near-infrared
超分子电荷转移发射器:提高近红外效率
  • 批准号:
    EP/W037661/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Creation of Oxygen Evolution Catalysts Using Synergistic Charge Transfer Enhancement by Mixing Transition Metal Ions
通过混合过渡金属离子的协同电荷转移增强来制备析氧催化剂
  • 批准号:
    23H01738
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Deep Eutectic Electrochromic Ionic Liquids Formed by Charge-Transfer Interaction and Its Application to Display Devices
电荷转移相互作用形成的深共晶电致变色离子液体的研制及其在显示器件中的应用
  • 批准号:
    23H01937
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of charge transfer mechanism in battery materials by operando measurements using quantum beams
使用量子束进行操作测量研究电池材料中的电荷转移机制
  • 批准号:
    23H01693
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了