Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
基本信息
- 批准号:10178044
- 负责人:
- 金额:$ 37.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressApoptosisAromatic Amino AcidsAutoimmune DiseasesBindingBiophysicsClinicalDiseaseExtracellular DomainFluorescence Resonance Energy TransferGoalsGrantIn VitroIndustryInflammatoryIntegral Membrane ProteinJournalsLigand BindingMalignant NeoplasmsMembraneMethionineMethodsModelingMolecular ComputationsMolecular ConformationPharmaceutical PreparationsPlayProcessProductivityProteinsPublishingReceptor ActivationReceptor SignalingResearchRheumatoid ArthritisRoleSet proteinSignal TransductionSpecificityStructureTNFRSF10B geneTNFRSF1A geneTechniquesTherapeutic InterventionThermodynamicsTimeTransmembrane DomainTumor Necrosis Factor ReceptorVertebral columnWorkanti-cancerbasebiophysical toolsclinically relevantconformational alterationdrug discoveryexperimental studyflexibilityhigh riskinterdisciplinary collaborationmembermolecular modelingoxidationpreventprotein foldingprotein misfoldingreceptorside effectsmall moleculetherapeutic targettool
项目摘要
ABSTRACT
The tumor necrosis factor receptors (TNFRs) are a superfamily of transmembrane proteins that play critical roles
in apoptosis and inflammatory diseases and are considered important therapeutic targets. Even though targeting
of TNFRs is a billion-dollar industry, the clinically available drugs cause devastating side effects because they
lack receptor specificity. My research focuses on understanding the essential conformational dynamics of TNFRs
that transduce signals across the membrane, with the ultimate goal of enabling highly effective and specific
targeting. To accelerate scientific discovery, we have focused on two of the most clinically relevant members of
the superfamily: TNFR1, involved in various autoimmune diseases, including rheumatoid arthritis; and Death
Receptor 5, one of the most actively pursued anti-cancer targets. We apply an investigative strategy that includes
computational molecular modeling, thermodynamic calculations, and in vitro experimental tools, enabling us to
predict and understand conformational changes in these single-pass transmembrane proteins. Our work has
yielded important findings published in high-impact journals. For instance, we elucidated mechanisms of ligand
binding in both TNFR1 and DR5. We found that binding is controlled by an interaction between methionine and
aromatic amino acids, causing a conformational rearrangement of the ligand-binding pocket. Our studies of this
interaction motif led to a fundamental discovery that answered a long-standing question regarding the role of
methionine in protein folding, and further, how methionine oxidation causes protein misfolding. We built a new
model of TNFR oligomerization that led us to discover that ligand binding causes a large-scale backbone
conformational change in the extracellular domain of the receptor. This finding revised previous assumptions
regarding TNFRs that activation occurs without any conformational changes in the receptor backbone. With
computation and biophysical and cellular experiments, we also showed for the first time a scissors-like opening
that occurs in the transmembrane domain helices and explained the fundamental thermodynamics of this
process. Significantly, using FRET-based small molecule discovery, we built on our new model of TNFR
activation and showed that allosteric alteration of the conformational states of TNFRs can inhibit activation, and
have thereby opened new avenues to therapeutic intervention. We propose to extend our discoveries by
integrating the dynamic modes across domains of the receptor and answering the fundamental question: what
is the structural and dynamic mechanism of TNFR activation? We will address impactful questions, some of
which may be high-risk, but with potential to be transformative in the field and to launch new directions in drug
discovery. Our productivity is enhanced by longstanding interdisciplinary collaborations that engage additional
biophysical tools, including EPR and NMR. The MIRA grant will provide flexibility to methodically, and deeply,
address fundamental questions regarding TNFR signaling, which will profoundly enhance efforts to identify and
rationally target the most vulnerable structural motifs in these important proteins.!
摘要
肿瘤坏死因子受体(TNFR)是一个跨膜蛋白超家族,发挥着关键作用
在细胞凋亡和炎性疾病中,被认为是重要的治疗靶点。尽管针对
TNFRs是一个价值数十亿美元的产业,临床上可用的药物会引起毁灭性的副作用,因为它们
缺乏受体特异性。我的研究重点是了解TNFRs的基本构象动力学
它将信号传递到细胞膜上,最终目标是实现高效和特异性的
面向.为了加速科学发现,我们专注于两个最临床相关的成员,
TNFR 1超家族,参与各种自身免疫性疾病,包括类风湿性关节炎;
受体5,最积极追求的抗癌靶点之一。我们采用的调查策略包括
计算分子建模,热力学计算和体外实验工具,使我们能够
预测和理解这些单程跨膜蛋白的构象变化。我们的工作
在高影响力期刊上发表了重要发现。例如,我们阐明了配体
结合TNFR 1和DR 5。我们发现,结合是由甲硫氨酸和
芳香族氨基酸,引起配体结合口袋的构象重排。我们对此的研究
互动主题导致了一个根本性的发现,回答了一个长期存在的问题,
甲硫氨酸在蛋白质折叠中的作用,以及甲硫氨酸氧化如何导致蛋白质错误折叠。我们建立了一个新的
TNFR寡聚化模型,使我们发现配体结合导致大规模骨架
受体胞外结构域的构象变化。这一发现修订了先前的假设
关于TNFR,活化发生时受体骨架没有任何构象变化。与
在计算、生物物理和细胞实验中,我们还首次展示了一个剪刀状的开口,
发生在跨膜结构域螺旋中,并解释了这一基本热力学
过程值得注意的是,使用基于FRET的小分子发现,我们建立了TNFR的新模型
激活,并表明TNFR构象状态的变构改变可以抑制激活,
从而为治疗干预开辟了新的途径。我们打算通过以下方式来扩展我们的发现
整合跨受体域的动态模式,并回答基本问题:
是TNFR激活的结构和动力学机制?我们将讨论一些有影响力的问题,
这可能是高风险的,但有可能在该领域发生变革,并在药物治疗领域开辟新的方向。
的发现我们的生产力通过长期的跨学科合作得到提高,
生物物理工具,包括EPR和NMR。MIRA赠款将提供灵活性,有条不紊,深入,
解决有关TNFR信号的基本问题,这将大大加强识别和
合理地瞄准这些重要蛋白质中最脆弱的结构基序。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan N Sachs其他文献
Jonathan N Sachs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan N Sachs', 18)}}的其他基金
How alpha-Synuclein misfolding promotes tau pathology in ADRD
α-突触核蛋白错误折叠如何促进 ADRD 中的 tau 病理学
- 批准号:
10285807 - 财政年份:2021
- 资助金额:
$ 37.35万 - 项目类别:
Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction
阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍
- 批准号:
10461322 - 财政年份:2021
- 资助金额:
$ 37.35万 - 项目类别:
Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction
阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍
- 批准号:
10489810 - 财政年份:2021
- 资助金额:
$ 37.35万 - 项目类别:
Exploiting New Fibril Structures to Understand the Biophysical Basis for Oligomerization and Toxicity of Alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚化和毒性的生物物理基础
- 批准号:
10684133 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10468800 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10042689 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
- 批准号:
10267686 - 财政年份:2020
- 资助金额:
$ 37.35万 - 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
- 批准号:
10594464 - 财政年份:2019
- 资助金额:
$ 37.35万 - 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
- 批准号:
10379462 - 财政年份:2019
- 资助金额:
$ 37.35万 - 项目类别:
Understanding and targeting the Methionine-Aromatic motif in oxidized alpha-Synuclein
了解和靶向氧化 α-突触核蛋白中的甲硫氨酸-芳香族基序
- 批准号:
9791033 - 财政年份:2018
- 资助金额:
$ 37.35万 - 项目类别:
相似国自然基金
Epac1/2通过蛋白酶体调控中性粒细胞NETosis和Apoptosis在急性肺损伤中的作用研究
- 批准号:LBY21H010001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Apoptosis/Ferroptosis双重激活效应的天然产物AlbiziabiosideA的抗肿瘤作用机制研究及其结构改造
- 批准号:81703335
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
双肝移植后Apoptosis和pyroptosis在移植物萎缩差异中的作用和供受者免疫微环境变化研究
- 批准号:81670594
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
Serp-2 调控apoptosis和pyroptosis 对肝脏缺血再灌注损伤的保护作用研究
- 批准号:81470791
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
Apoptosis signal-regulating kinase 1是七氟烷抑制小胶质细胞活化的关键分子靶点?
- 批准号:81301123
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
APO-miR(multi-targeting apoptosis-regulatory miRNA)在前列腺癌中的表达和作用
- 批准号:81101529
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
放疗与细胞程序性死亡(APOPTOSIS)相关性及其应用研究
- 批准号:39500043
- 批准年份:1995
- 资助金额:9.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of an apoptosis biosensor for monitoring of breast cancer
开发用于监测乳腺癌的细胞凋亡生物传感器
- 批准号:
10719415 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Interrogating the Fgl2-FcγRIIB axis on CD8+ T cells: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
询问 CD8 T 细胞上的 Fgl2-FcγRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10605856 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Novel targeted therapy for FGFR inhibitor-resistant urothelial cancer and apoptosis based therapy for urothelial cancer
FGFR抑制剂耐药性尿路上皮癌的新型靶向治疗和基于细胞凋亡的尿路上皮癌治疗
- 批准号:
23K08773 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanistic analysis of apoptosis induction by HDAC inhibitors in head and neck cancer
HDAC抑制剂诱导头颈癌凋亡的机制分析
- 批准号:
23K15866 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Interrogating the Fgl2-FcgRIIB axis: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
探究 Fgl2-FcgRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10743485 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
Investigating the role of apoptosis-resistance and the tumor environment on development and maintenance of sacrococcygeal teratomas
研究细胞凋亡抗性和肿瘤环境对骶尾部畸胎瘤发生和维持的作用
- 批准号:
10749797 - 财政年份:2023
- 资助金额:
$ 37.35万 - 项目类别:
The effects of glucose on immune cell apoptosis and mitochondrial membrane potential and the analysis of its mechanism by which glucose might modulate the immune functions.
葡萄糖对免疫细胞凋亡和线粒体膜电位的影响及其调节免疫功能的机制分析。
- 批准号:
22K09076 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
XAF1 IN P53 SIGNALING, APOPTOSIS AND TUMOR SUPPRESSION
P53 信号传导、细胞凋亡和肿瘤抑制中的 XAF1
- 批准号:
10583516 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别:
Role of Thioredoxin system in regulation of autophagy-apoptosis cross talk in neurons: Uncovering Novel Molecular Interactions.
硫氧还蛋白系统在神经元自噬-凋亡串扰调节中的作用:揭示新的分子相互作用。
- 批准号:
RGPIN-2019-05371 - 财政年份:2022
- 资助金额:
$ 37.35万 - 项目类别:
Discovery Grants Program - Individual