Understanding the structural dynamics of TNF receptors

了解 TNF 受体的结构动力学

基本信息

  • 批准号:
    10594464
  • 负责人:
  • 金额:
    $ 37.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT The tumor necrosis factor receptors (TNFRs) are a superfamily of transmembrane proteins that play critical roles in apoptosis and inflammatory diseases and are considered important therapeutic targets. Even though targeting of TNFRs is a billion-dollar industry, the clinically available drugs cause devastating side effects because they lack receptor specificity. My research focuses on understanding the essential conformational dynamics of TNFRs that transduce signals across the membrane, with the ultimate goal of enabling highly effective and specific targeting. To accelerate scientific discovery, we have focused on two of the most clinically relevant members of the superfamily: TNFR1, involved in various autoimmune diseases, including rheumatoid arthritis; and Death Receptor 5, one of the most actively pursued anti-cancer targets. We apply an investigative strategy that includes computational molecular modeling, thermodynamic calculations, and in vitro experimental tools, enabling us to predict and understand conformational changes in these single-pass transmembrane proteins. Our work has yielded important findings published in high-impact journals. For instance, we elucidated mechanisms of ligand binding in both TNFR1 and DR5. We found that binding is controlled by an interaction between methionine and aromatic amino acids, causing a conformational rearrangement of the ligand-binding pocket. Our studies of this interaction motif led to a fundamental discovery that answered a long-standing question regarding the role of methionine in protein folding, and further, how methionine oxidation causes protein misfolding. We built a new model of TNFR oligomerization that led us to discover that ligand binding causes a large-scale backbone conformational change in the extracellular domain of the receptor. This finding revised previous assumptions regarding TNFRs that activation occurs without any conformational changes in the receptor backbone. With computation and biophysical and cellular experiments, we also showed for the first time a scissors-like opening that occurs in the transmembrane domain helices and explained the fundamental thermodynamics of this process. Significantly, using FRET-based small molecule discovery, we built on our new model of TNFR activation and showed that allosteric alteration of the conformational states of TNFRs can inhibit activation, and have thereby opened new avenues to therapeutic intervention. We propose to extend our discoveries by integrating the dynamic modes across domains of the receptor and answering the fundamental question: what is the structural and dynamic mechanism of TNFR activation? We will address impactful questions, some of which may be high-risk, but with potential to be transformative in the field and to launch new directions in drug discovery. Our productivity is enhanced by longstanding interdisciplinary collaborations that engage additional biophysical tools, including EPR and NMR. The MIRA grant will provide flexibility to methodically, and deeply, address fundamental questions regarding TNFR signaling, which will profoundly enhance efforts to identify and rationally target the most vulnerable structural motifs in these important proteins.!
摘要 肿瘤坏死因子受体(TNFR)是一个跨膜蛋白超家族,发挥着关键作用 在细胞凋亡和炎性疾病中,被认为是重要的治疗靶点。尽管针对 TNFRs是一个价值数十亿美元的产业,临床上可用的药物会引起毁灭性的副作用,因为它们 缺乏受体特异性。我的研究重点是了解TNFRs的基本构象动力学 它将信号传递到细胞膜上,最终目标是实现高效和特异性的 面向.为了加速科学发现,我们专注于两个最临床相关的成员, TNFR 1超家族,参与各种自身免疫性疾病,包括类风湿性关节炎; 受体5,最积极追求的抗癌靶点之一。我们采用的调查策略包括 计算分子建模,热力学计算和体外实验工具,使我们能够 预测和理解这些单程跨膜蛋白的构象变化。我们的工作 在高影响力期刊上发表了重要发现。例如,我们阐明了配体 结合TNFR 1和DR 5。我们发现,结合是由甲硫氨酸和 芳香族氨基酸,引起配体结合口袋的构象重排。我们对此的研究 互动主题导致了一个根本性的发现,回答了一个长期存在的问题, 甲硫氨酸在蛋白质折叠中的作用,以及甲硫氨酸氧化如何导致蛋白质错误折叠。我们建立了一个新的 TNFR寡聚化模型,使我们发现配体结合导致大规模骨架 受体胞外结构域的构象变化。这一发现修订了先前的假设 关于TNFR,活化发生时受体骨架没有任何构象变化。与 在计算、生物物理和细胞实验中,我们还首次展示了一个剪刀状的开口, 发生在跨膜结构域螺旋中,并解释了这一基本热力学 过程值得注意的是,使用基于FRET的小分子发现,我们建立了TNFR的新模型 激活,并表明TNFR构象状态的变构改变可以抑制激活, 从而为治疗干预开辟了新的途径。我们打算通过以下方式来扩展我们的发现 整合跨受体域的动态模式,并回答基本问题: 是TNFR激活的结构和动力学机制?我们将讨论一些有影响力的问题, 这可能是高风险的,但有可能在该领域发生变革,并在药物治疗领域开辟新的方向。 的发现我们的生产力通过长期的跨学科合作得到提高, 生物物理工具,包括EPR和NMR。MIRA赠款将提供灵活性,有条不紊,深入, 解决有关TNFR信号的基本问题,这将大大加强识别和 合理地瞄准这些重要蛋白质中最脆弱的结构基序。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Indirubin Inhibits TRAIL-Induced Activation of Death Receptor 5 in Jurkat Cells.
  • DOI:
    10.1177/1934578x221144580
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Young, Malaney C. C.;Vunnam, Nagamani;Rebbeck, Robyn T. T.;Yuen, Samantha L. L.;Thomas, David D. D.;Sachs, Jonathan N. N.
  • 通讯作者:
    Sachs, Jonathan N. N.
Nimesulide, a COX-2 inhibitor, sensitizes pancreatic cancer cells to TRAIL-induced apoptosis by promoting DR5 clustering †.
  • DOI:
    10.1080/15384047.2023.2176692
  • 发表时间:
    2023-12-31
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Vunnam, Nagamani;Young, Malaney C.;Liao, Elly E.;Lo, Chih Hung;Huber, Evan;Been, MaryJane;Thomas, David D.;Sachs, Jonathan N.
  • 通讯作者:
    Sachs, Jonathan N.
Fluorescence Lifetime Measurement of Prefibrillar Sickle Hemoglobin Oligomers as a Platform for Drug Discovery in Sickle Cell Disease.
  • DOI:
    10.1021/acs.biomac.2c00671
  • 发表时间:
    2022-09-12
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Vunnam, Nagamani;Hansen, Scott;Been, MaryJane Olivia;Lo, Chih Hung;Pandey, Anil K.;Paulsen, Carolyn N.;Rohde, John A.;Thomas, David D.;Sachs, Jonathan N.;Wood, David K.
  • 通讯作者:
    Wood, David K.
Threonine Cavities Are Targetable Motifs That Control Alpha-Synuclein Fibril Growth.
  • DOI:
    10.1021/acschemneuro.2c00327
  • 发表时间:
    2022-09-07
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Kochen, Noah Nathan;Vasandani, Vivek;Seaney, Darren;Pandey, Anil K.;Walters, Michael A.;Braun, Anthony R.;Sachs, Jonathan N.
  • 通讯作者:
    Sachs, Jonathan N.
Broad Tricyclic Ring Inhibitors Block SARS-CoV-2 Spike Function Required for Viral Entry.
  • DOI:
    10.1021/acsinfecdis.1c00658
  • 发表时间:
    2022-10-14
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Ratnapriya S;Braun AR;Cervera Benet H;Carlson D;Ding S;Paulson CN;Mishra N;Sachs JN;Aldrich CC;Finzi A;Herschhorn A
  • 通讯作者:
    Herschhorn A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan N Sachs其他文献

Jonathan N Sachs的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan N Sachs', 18)}}的其他基金

Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction
阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍
  • 批准号:
    10461322
  • 财政年份:
    2021
  • 资助金额:
    $ 37.35万
  • 项目类别:
How alpha-Synuclein misfolding promotes tau pathology in ADRD
α-突触核蛋白错误折叠如何促进 ADRD 中的 tau 病理学
  • 批准号:
    10285807
  • 财政年份:
    2021
  • 资助金额:
    $ 37.35万
  • 项目类别:
Elucidating the biophysics of pre-fibrillar, toxic tau oligomers: from amino acid motifs to neuronal dysfunction
阐明前原纤维有毒 tau 寡聚体的生物物理学:从氨基酸基序到神经元功能障碍
  • 批准号:
    10489810
  • 财政年份:
    2021
  • 资助金额:
    $ 37.35万
  • 项目类别:
Exploiting New Fibril Structures to Understand the Biophysical Basis for Oligomerization and Toxicity of Alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚化和毒性的生物物理基础
  • 批准号:
    10684133
  • 财政年份:
    2020
  • 资助金额:
    $ 37.35万
  • 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
  • 批准号:
    10468800
  • 财政年份:
    2020
  • 资助金额:
    $ 37.35万
  • 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
  • 批准号:
    10042689
  • 财政年份:
    2020
  • 资助金额:
    $ 37.35万
  • 项目类别:
Exploiting new fibril structures to understand the biophysical basis for oligomerization and toxicity of alpha-Synuclein
利用新的原纤维结构来了解 α-突触核蛋白寡聚和毒性的生物物理基础
  • 批准号:
    10267686
  • 财政年份:
    2020
  • 资助金额:
    $ 37.35万
  • 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
  • 批准号:
    10178044
  • 财政年份:
    2019
  • 资助金额:
    $ 37.35万
  • 项目类别:
Understanding the structural dynamics of TNF receptors
了解 TNF 受体的结构动力学
  • 批准号:
    10379462
  • 财政年份:
    2019
  • 资助金额:
    $ 37.35万
  • 项目类别:
Understanding and targeting the Methionine-Aromatic motif in oxidized alpha-Synuclein
了解和靶向氧化 α-突触核蛋白中的甲硫氨酸-芳香族基序
  • 批准号:
    9791033
  • 财政年份:
    2018
  • 资助金额:
    $ 37.35万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.35万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了