Finite Difference Method and Finite Element Method on Manifolds, and Their Applications

流形上的有限差分法和有限元法及其应用

基本信息

  • 批准号:
    60540110
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1985
  • 资助国家:
    日本
  • 起止时间:
    1985 至 1986
  • 项目状态:
    已结题

项目摘要

(1) A method of finite element approximations on a Riemann surface. Our method matches the abstruct definition of a Riemann surface,and also will offer a new technique and high utility in numerical calculation not only for the case of Riemann surfaces but also for the case of plane domains. It is a peculiarity of our method that by means of adopting a finite element approximation on a parametric disk of each critical point of a Riemann surface, approximations of high accuracy is obtained.(2) Determination of the modulus of quadrilaterals by finite element methods. We establish a method by which a fairly good approximation of the modulus of quadrilaterals on the complex plane is obtained. It is a peculiarity of our method that on a neighborhood of each critical point on the boundary, the same method as (1) is adopted.
(1)黎曼曲面上的有限元逼近方法。本文的方法符合黎曼曲面的抽象定义,不仅对黎曼曲面的情形,而且对平面区域的情形,都将提供一种新的数值计算方法和很高的实用性。本文方法的一个特点是对黎曼曲面的每个临界点采用参数圆盘上的有限元逼近,从而得到高精度的逼近。(2)用有限单元法确定四边形的模量。本文建立了一种方法,利用这种方法可以得到复平面上四边形的模的一个较好的近似。我们的方法的一个特点是,在边界上每个临界点的邻域上,采用与(1)相同的方法。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EGUCHI, Masaaki: "A Hardy- Littlewood theorem for spherical Fourier transform on symmetric spaces." J. Functional Analysis. 70. (1987)
EGUCHI,Masaaki:“对称空间上球面傅立叶变换的 Hardy-Littlewood 定理。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
FISHER, Brian: "Some results on distributions and the change of variable." Mem. Fac. Int. Arts & Sci., Hiroshima Univ.11. 1-15 (1986)
FISHER,Brian:“关于分布和变量变化的一些结果。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
江口正晃: J.Functional Analysis. 70. (1987)
江口正明:J.泛函分析 70。(1987)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
FISHER,Brian: Mem.Fac.Int.Arts & Sci.,Hiroshima Univ.11. 1-15 (1986)
布莱恩·费舍尔:Mem.Fac.Int.Arts
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
MIZUMOTO, Hisao: "Finite element approximations of harmonic differentials on a Riemann surface."
MIZUMOTO, Hisao:“黎曼曲面上调和微分的有限元近似。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIZUMOTO Hisao其他文献

MIZUMOTO Hisao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
  • 批准号:
    23K03140
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Moduli of holomorphic vector bundles over a Riemann surface
黎曼曲面上的全纯向量丛的模
  • 批准号:
    544920-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Study of the continuations and the spans of an open Riemann surface in view of the thory of functions of several complex variables
从多复变量函数理论研究开黎曼曲面的延拓和跨度
  • 批准号:
    15K04930
  • 财政年份:
    2015
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On the geometry of a Riemann surface underlying a virtual turning point
虚拟转折点下黎曼曲面的几何
  • 批准号:
    20540150
  • 财政年份:
    2008
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Continuations of a Riemann surface and dynamics of viscos fluid --- study of conformal embeddings and associated Poiseuille flow
黎曼曲面的延拓和粘性流体动力学——共形嵌入和相关泊肃叶流的研究
  • 批准号:
    20540174
  • 财政年份:
    2008
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional Analyistic Studies On The Algebra Of Bounded Analytic Functions On A Riemann Surface
黎曼曲面上有界解析函数代数的泛函分析研究
  • 批准号:
    16540132
  • 财政年份:
    2004
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the theory of conformal embeddings of a Riemann surface focused on the hyperrbolic metric and hydrodynamics of viscous fluids
黎曼曲面共形嵌入理论研究,重点关注粘性流体的双曲度量和流体动力学
  • 批准号:
    16540157
  • 财政年份:
    2004
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study of Riemann Surface via Weil-Peterson Geometry of Teichmuller Spaces
基于Teichmuller空间Weil-Peterson几何的黎曼曲面研究
  • 批准号:
    0222387
  • 财政年份:
    2001
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
The Algebras of Bounded Analytic Functions on a Riemann Surface and the isomorphic problem
黎曼曲面上有界解析函数的代数与同构问题
  • 批准号:
    12640147
  • 财政年份:
    2000
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study of Riemann Surface via Weil-Peterson Geometry of Teichmuller Spaces
基于Teichmuller空间Weil-Peterson几何的黎曼曲面研究
  • 批准号:
    0071862
  • 财政年份:
    2000
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了