Theory and applications of functional analysis
泛函分析理论与应用
基本信息
- 批准号:61540107
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1986
- 资助国家:日本
- 起止时间:1986 至 1987
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of operator algebras was the principal subject of the present research.(1) Jones index of subfactors of II_1 factors and the relative entropy of Pimsner and Popa. These have intimate relations to each other and also have close relations with the structure of the original factor. We investigated these interrelations, and special attentions were put in the case of a factor and its crossed product with a finite group when the group acted on the factor as a group of outer automorphisms.(2) Completely positive maps among C^ algebras. The notion of homomorphism between C^ algebras is extended somehow as completely positive maps. This s an important notion in recent researches. Among ordered Banach spaces composed of bounded linlear operators between C^ algebras, this notion of completely positive maps can be introduced. Then a question : When does the mere assumption of the positivity imply the complete positiviey ? It was observed that, for the affirmative answer to this question, abelian characters of component C^ algebras play some roles.(3) C^ dynamical system. Tesearches were made from the point of view of applications. The fixed subalgebra. The spectrum, i.e. the space of the irreducible representations. The lifting problem of a state of the original algebra to the crossed product. And so on.(4) The so-called similarity problem, which asks if a bounded representation of a C^ algebra is equivalent to a ^ representation. It is related with the derivations and the norms of completely bounded maps. We determined these norms exactly when the C^ algebras in question were of finite dimension and made applications of this result to the general case.
算子代数理论是本研究的主要内容。(1)Ⅱ_1因子子因子的Jones指数及Pimsner和Popa的相对熵。这些因素相互之间有着密切的联系,也与原始要素的结构有着密切的关系。我们研究了这些相互关系,并特别注意的情况下,一个因素和它的交叉产品与一个有限的群时,该集团作为一个集团的外自同构的因素。(2)C^代数中的完全正映射C^代数之间的同态概念以某种方式扩展为完全正映射。这是最近研究中的一个重要概念。在由C^代数之间的有界线性算子构成的序Banach空间中,可以引入完全正映射的概念。那么问题就来了:单纯的肯定性假设在什么时候意味着完全的肯定性?人们发现,对于这个问题的肯定回答,分支C^代数的交换特征标起了一定的作用。(3)C^动力系统。从应用的角度进行了研究。固定子代数。谱,即不可约表示的空间。原代数的一个状态到交叉积的提升问题。等(4)所谓的相似性问题,它询问C^代数的有界表示是否等价于^表示。它与完全有界映射的导子和范数有关。当所讨论的C^代数是有限维的时候,我们精确地确定了这些范数,并将这个结果应用到一般情况。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Kawakami & H.Yosida: "Actions of finite groups on finite fon Neumann algebras and the relative entropy" J.Math. Soc. Japan. 39. 606-626 (1987)
川上S
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
河上哲,吉田裕恋: J.Math.Soc.Japan. 39. 609-626 (1987)
Tetsu Kawakami,Yuki Yoshida:J.Math.Soc.Japan 39. 609-626 (1987)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Kusuda: "G-primitive spectrum of a C^ algebra" Mathematica Japonica. 32. 769-789 (1987)
M.Kusuda:“C^ 代数的 G 基元谱”Mathematica Japonica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Nagisa & G.Song: "On some property of bounded homomorphisms and derivations of a C algebra" Mathematica Japonica. 32. 801-810 (1987)
渚先生
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKENOUCHI Osamu其他文献
TAKENOUCHI Osamu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKENOUCHI Osamu', 18)}}的其他基金
Research on the History of Mathematics
数学史研究
- 批准号:
18540149 - 财政年份:2006
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of the History of Mathematics
数学史研究
- 批准号:
13640144 - 财政年份:2001
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the History of Mathematics
数学史研究
- 批准号:
11640143 - 财政年份:1999
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
An Integrated Study about the Interrelation between Computers and Mathematics Education
计算机与数学教育相互关系的综合研究
- 批准号:
04302066 - 财政年份:1992
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Research on Various Problems of Mathematics Education and Development of New Teaching Methods and Materials
数学教育各类问题的研究及新教学方法和教材的开发
- 批准号:
62880033 - 财政年份:1987
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research
Various problems in mathematics education and developments of new materials.
数学教育中的各种问题和新材料的开发。
- 批准号:
59880025 - 财政年份:1984
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research
相似海外基金
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Categorical Symmetries of Operator Algebras
算子代数的分类对称性
- 批准号:
2247202 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Groundwork for Operator Algebras Lecture Series 2023
会议:2023 年算子代数系列讲座的基础
- 批准号:
2247796 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Conference: East Coast Operator Algebras Symposium 2023
会议:2023 年东海岸算子代数研讨会
- 批准号:
2321632 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
- 批准号:
2247322 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
Conference: Groundwork for Operator Algebras Lecture Series (GOALS) 2022
会议:算子代数基础讲座系列 (GOALS) 2022
- 批准号:
2154574 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Identities from Vertex Operator Algebras on the Moduli of Curves
曲线模上顶点算子代数的恒等式
- 批准号:
2200862 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Operator algebras and operator theory
算子代数和算子理论
- 批准号:
RGPIN-2018-03973 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual