Establishment of Numerical Calculation Method for Heating/Cooling of Semi-Conductors and Study on their Functional Depression.
半导体加热/冷却数值计算方法的建立及其功能抑制研究。
基本信息
- 批准号:61550173
- 负责人:
- 金额:$ 0.77万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1986
- 资助国家:日本
- 起止时间:1986 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Our reseach team will develope the variational principles for temperature of solid and fluid. Both principles have the equilibrium condition of heat flux on the solid and fluid boundarys. The combination of both principles and a hybrid type virtual work principle for flow problems is applicable to the analysis of the thermally coupled problems between solid and fluid.We also formulate the finite element method (FEM) based on the above principles in order to analyze the superheating and/or overcooling behaviors for semiconductors. Moreover, the FEM can be used to prevent their broken-down conditions due to thermal straining when they are superheated and/or overcooled.
我们的研究小组将发展固体和流体温度的变分原理。这两种原理都具有固体和流体边界上的热流密度平衡条件。两种原理的结合以及流动问题的混合型虚功原理适用于固流热耦合问题的分析。在此基础上,建立了分析半导体过热和过冷行为的有限元方法。此外,FEM可用于防止它们在过热和/或过冷时因热应变而破裂的情况。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
浅野直輝,亀ケ谷博,中田勝啓: 日本機械学会論文集.
Naoki Asano、Hiroshi Kamegaya、Katsuhiro Nakata:日本机械工程师学会会议录。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Naoki ASANO, Hiroshi KAMEGAYA, Katsuhiro NAKADA: "A Numerical Analysis of Thermally Coupled Problems between Solid and Fluid Using Finite Element Method (1st Report, on Thermally Coupled Problems of Steady Natural Convective Flow)" Transaction of Japan So
Naoki ASANO、Hiroshi KAMEGAYA、Katsuhiro NAKADA:“A Numerical Analysis of Thermally Coupled Problems Between Solid and Fluid using Finite Element Method (1st Report, on Thermally Coupled Problems of Steady Natural Conveective Flow)” Transaction of Japan So
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ASANO Naoki其他文献
ASANO Naoki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ASANO Naoki', 18)}}的其他基金
The predominance of senescence-evading aged gastric epithelial cells may contribute to aging-related gastric carcinogenesis
逃避衰老的老化胃上皮细胞的优势可能导致与衰老相关的胃癌发生
- 批准号:
19K08411 - 财政年份:2019
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cross talk between the innate immune response and trans- differentiation/carcinogenesis in the gastric epithelium
先天免疫反应与胃上皮细胞转分化/癌变之间的交互作用
- 批准号:
23790766 - 财政年份:2011
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Cooperation of TGF-β and Notch in the induction of intestinal metaplasia and cancer stem cells of the esophagus and stomach
TGF-β与Notch协同诱导食管胃肠化生和癌症干细胞
- 批准号:
21790647 - 财政年份:2009
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似海外基金
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
- 批准号:
23K04012 - 财政年份:2023
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
- 批准号:
573136-2022 - 财政年份:2022
- 资助金额:
$ 0.77万 - 项目类别:
University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
- 批准号:
2795756 - 财政年份:2022
- 资助金额:
$ 0.77万 - 项目类别:
Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
- 批准号:
22K04278 - 财政年份:2022
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
- 批准号:
2207164 - 财政年份:2022
- 资助金额:
$ 0.77万 - 项目类别:
Continuing Grant
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
- 批准号:
2009366 - 财政年份:2020
- 资助金额:
$ 0.77万 - 项目类别:
Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
- 批准号:
2012285 - 财政年份:2020
- 资助金额:
$ 0.77万 - 项目类别:
Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
- 批准号:
20K10160 - 财政年份:2020
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
- 批准号:
19K15078 - 财政年份:2019
- 资助金额:
$ 0.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A vorticity preserving finite element method for the compressible Euler equations on unstructured grids
非结构网格上可压缩欧拉方程的保涡有限元法
- 批准号:
429491391 - 财政年份:2019
- 资助金额:
$ 0.77万 - 项目类别:
Research Fellowships