Demonstration of gate-tunable 2DEG surface polaritons in LaAlO3/SrTiO3 bilayers

LaAlO3/SrTiO3 双层中栅极可调 2DEG 表面极化子的演示

基本信息

  • 批准号:
    522417350
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Grants
  • 财政年份:
  • 资助国家:
    德国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

In this follow-up proposal, we will address novel surface polaritons at atomically controlled oxide interfaces. Such surface polaritons enable a strong light-matter interaction on the nanoscale, which is not accessible in classical systems, and yield a wide range of nanooptical and polaritonic applications. In the first project phase of this proposal, we achieved a fundamental understanding of the optical near-field interaction of light and 2-dimensional electron gases generated at buried oxide interfaces. Moreover, we were able to correlate the detailed ionic structure of the interface to resulting electronic transport properties and magnetic signatures. Based on this gained knowledge, we are now able to probe the polaritonic behavior of the interface in the follow-up project phase. Major objective of this second project phase is the unambiguous demonstration of surface polaritons in these interface systems as well as the characterization and modelling of the full dispersion relation of these novel polaritonic states. In addition to that, we aim to systematically control the carrier density and vertical distribution of carriers at the interface via electric field effect, making it likely that also the polaritonic properties of the interface can be manipulated via electric-field-control. The demonstration of gate-tunable 2DEG polaritons will hence be subject to this follow-up proposal. For this, we will investigate LaAlO3/SrTiO3- bilayers, which will be gated from the thin films’ back-side. In this bilayer geometry, it is expected that the required gate voltage, typically in the range of hundreds of volts, can be reduced to a few volts or even toward the mV-range, drastically facilitating the field control. At the same time, the bilayer structure yields new scientific challenges toward understanding the interaction of electronic charge carriers and growth-induced crystal defects, which will be addressed within the scope of the follow-up project. In dedicated preliminary experiments, we were able to achieve a fundamental understanding of the optical properties of the electron gas and moreover found first experimental indication of surface polaritons at the LaAlO3/SrTiO3- interface. In addition, we were able to demonstrate that LaAlO3/SrTiO3-bilayers can be achieved with sufficient quality to obtain enhanced gating-behavior. Based on these results, we now aim to realize bilayer field-effect devices and unravel their polaritonic properties via nanooptical scanning probe microscopy and modelling. The intended demonstration of gate-tunable 2DEG polaritons will reflect a significant step toward realizing oxide-based nanooptical and polaritonic devices and will generate a major leap in fundamental understanding of matter-light-interactions on the nanoscale.
在这个后续的建议中,我们将在原子控制的氧化物界面上解决新的表面极化。这种表面极化子能够在纳米尺度上实现强烈的光-物质相互作用,这在经典系统中是无法实现的,并且产生了广泛的纳米光学和极化应用。在本提案的第一个项目阶段,我们对埋藏氧化物界面产生的光和二维电子气体的光学近场相互作用有了基本的了解。此外,我们能够将界面的详细离子结构与产生的电子输运性质和磁特征联系起来。基于这些获得的知识,我们现在能够在后续项目阶段探测界面的极化行为。第二个项目阶段的主要目标是明确地展示这些界面系统中的表面极化,以及这些新型极化态的全色散关系的表征和建模。此外,我们的目标是通过电场效应系统地控制载流子密度和载流子在界面处的垂直分布,从而有可能通过电场控制来操纵界面的极化性质。因此,栅极可调谐的2DEG极化的演示将受到本后续提案的影响。为此,我们将研究从薄膜背面门控的LaAlO3/SrTiO3-双分子层。在这种双层几何结构中,预期所需的栅极电压,通常在数百伏特的范围内,可以降低到几伏特甚至接近毫伏范围,从而大大促进了场控制。同时,双层结构对理解电子载流子和生长诱导的晶体缺陷的相互作用提出了新的科学挑战,这将在后续项目的范围内得到解决。在专门的初步实验中,我们能够对电子气体的光学性质有一个基本的了解,并且在LaAlO3/SrTiO3-界面上发现了第一个表面极化的实验指示。此外,我们能够证明,LaAlO3/ srtio3 -双分子层可以获得足够的质量,以获得增强的门控行为。基于这些结果,我们现在的目标是实现双层场效应器件,并通过纳米光学扫描探针显微镜和建模揭示其极化特性。门可调谐2DEG极化子的演示将反映出实现基于氧化物的纳米光学和极化子器件的重要一步,并将在纳米尺度上对物质-光相互作用的基本理解上产生重大飞跃。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Felix Gunkel其他文献

Dr. Felix Gunkel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Felix Gunkel', 18)}}的其他基金

Degradation-control of perovskite oxide OER catalysts under dynamic operation conditions via advanced operando characterization and orbital-d-band engineering
通过先进的操作表征和轨道 d 带工程在动态操作条件下控制钙钛矿氧化物 OER 催化剂的降解
  • 批准号:
    493705276
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

面向无人机应用的增强型p-gate AlGaN/GaN HEMT高功率微波辐射效应及 机理研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
二次外延势垒层的新型p-gate GaN HEMT器件栅极可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
直接带隙In2Se3、GaTe纳米片/MoS2复合薄膜的制备及饱和吸收性能的研究
  • 批准号:
    2020A151501861
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
二次外延AlGaN势垒层的增强型p-gate GaN HEMT新结构研究
  • 批准号:
    61904207
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
痛(感)觉传递新“gate”——DRG对外周痛觉信号传递的调控及对疼痛行为的影响
  • 批准号:
    81870872
  • 批准年份:
    2018
  • 资助金额:
    61.0 万元
  • 项目类别:
    面上项目
基于硅基一维纳米线的Gate-all-around纳米晶体管的研究
  • 批准号:
    61176101
  • 批准年份:
    2011
  • 资助金额:
    52.0 万元
  • 项目类别:
    面上项目
探索基因改造后大肠杆菌M1061对结肠癌肝转移灶治疗的实验研究
  • 批准号:
    30950017
  • 批准年份:
    2009
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
高压闸门水封的非线性计算理论与实验研究
  • 批准号:
    50679059
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Toward Smart Surface Acoustic Wave Devices with Gate-Tunability
职业:开发具有栅极可调谐性的智能表面声波器件
  • 批准号:
    2337069
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Eradicate the Gate: Empowering Learners and Equalizing Assessment in K12 Engineering Education
职业:消除大门:K12 工程教育中的学习者赋权和均衡评估
  • 批准号:
    2339619
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Dual Series Gate Configuration, Materials Design, and Mechanistic Modeling for Drift-Stabilized, Highly Sensitive Organic Electrochemical Transistor Biosensors
用于漂移稳定、高灵敏度有机电化学晶体管生物传感器的双串联栅极配置、材料设计和机械建模
  • 批准号:
    2402407
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/2
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
NSF-NSERC: Building a two-qubit controlled phase gate using laterally coupled semiconductor quantum dots
NSF-NSERC:使用横向耦合半导体量子点构建两个量子位控制的相位门
  • 批准号:
    2317047
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of pH responsive polymer and inorganic porous support composite gate membrane
pH响应聚合物与无机多孔支撑复合闸膜的研制
  • 批准号:
    23K04468
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Could GATE-16 help unlock the gate to treatment response in pancreatic ductal adenocarcinoma?
GATE-16 能否帮助打开胰腺导管腺癌治疗反应的大门?
  • 批准号:
    495197
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of fast self regulating digital active gate driver for SiC MOSFET
SiC MOSFET 快速自调节数字有源栅极驱动器的开发
  • 批准号:
    23H01399
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of Digital Active Gate Drive System for SiC MOSFETs toward Integration of Power Conversion Circuits
面向功率转换电路集成化的 SiC MOSFET 数字有源栅极驱动系统的开发
  • 批准号:
    22KJ1702
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了