離散システムの解析アルゴリズムに関する数学的研究

离散系统解析算法的数学研究

基本信息

  • 批准号:
    01540175
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1989
  • 资助国家:
    日本
  • 起止时间:
    1989 至 无数据
  • 项目状态:
    已结题

项目摘要

離散システムの特性や動的挙動を計算機を用いて解析するためのアルゴリズムを提唱し、またそのアルゴリズムの収束性などについて研究するのが中心課題である。離散システムのうち特に定数係数線形連続システムを計算機向きに離散近似したシステムを対称とする。当初は適切なアルゴリズムによりシステムの殆どの特性が解明できると考えていたが、アルゴリズムの収束性を初めとして諸性質にシステムの可到達性(可制御性とほぼ同値)、可観測性、それらの一般化の可安定性、可検出性が深く関与することがわかってきたので次を研究した。1.離散近似系としては最もよく使われる0次ホ-ルドによるものを考え、元の連続システムが可安定性・可検出性を持つとき、対応する離散システムが可安定性・可検出性を保存する必要十分条件を求めた。2.システムの観測と制御を計算機で実行する事を考慮して、制御入力に時間遅れを持つ連続システムが可安定性・可検出性を持つとき、0次ホ-ルドによる離散近似系がそれらの性質を保存する必要十分条件を求めた。3.(1)開区間上のとつ関数の並べ換えがとつ関数となる条件は何か。(2)フ-リエ級数の収束の同値定理について。(3)フ-リエ級数のcontractionと絶対総和法について。が上の1、2の研究と関係して問題となることがわかってきたが、これらについても解決することができた。4.上記は信州大学および科研費での出張先の大学での研究討論により深化・発展され、日本数学会、研究集会「Martingaleとその応用」、実解析セミナ-、応用函数解析シンポジウムで講演し、研究発表欄の様な論文となった。またその続編を執筆すべく研究中である。
The central task of the study of the characteristics of discrete systems is to analyze the dynamics of discrete systems using computers. The discrete number of coefficients is linear. The computer approximates the discrete number. At the beginning, the properties of the system are studied in terms of accessibility (controllability and stability), detectability, generalization, stability and detectability. 1. Discrete approximation is the necessary condition for the stability and detectability of discrete systems. 2. The necessary condition for preserving the properties of discrete approximation system is to consider the measurement and control of the system, to control the input force, to maintain the stability and detectability of the system, and to obtain the necessary condition for preserving the properties of the system. 3. (1)On the open interval, the number of connections and the number of connections are changed. (2)フ-リエ级数の収束の同値定理について。(3)フ-リエ级数のcontractionと绝対総和法について。The relationship between the above 1 and 2 is discussed. 4. The above report is a lecture on deepening and developing research discussion at Shinshu University, Japan Mathematical Society, research meeting "Martingale and Application," analysis of basic functions, analysis of application functions, and research development column. The author of the book is in the middle of his research.

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Morishige Kimura: "Preservation of stabilizability of a continuous time-invariant linear system after discretization" In ternat.J.Systems Science. 21. (1990)
Morishige Kimura:“离散化后连续时不变线性系统稳定性的保持”Internat.J.Systems Science。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yuji Sakai: "Convex functions and G-rearrangements on intervals" J.Fac.Engg.,Shinshu Univ.66. 1-5 (1989)
Yuji Sakai:“凸函数和间隔上的 G 重排”J.Fac.Engg.,Shinshu Univ.66。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yasuo Okuyama: "On contraction of Fourier series II" Tamkang J.Math.20. 347-355 (1989)
Yasuo Okuyama:“论傅里叶级数 II 的收缩” Tamkang J.Math.20。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

木村 盛茂其他文献

木村 盛茂的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('木村 盛茂', 18)}}的其他基金

離散システムの構造および解析アルゴリズムに関する数学的研究
离散系统结构与分析算法的数学研究
  • 批准号:
    08640266
  • 财政年份:
    1996
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
離散システムの構造および解析アルゴリズムに関する数学的研究
离散系统结构与分析算法的数学研究
  • 批准号:
    06640301
  • 财政年份:
    1994
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
離散システムの構造および解析アルゴリズムに関する数学的研究
离散系统结构与分析算法的数学研究
  • 批准号:
    04640219
  • 财政年份:
    1992
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

機械学習アルゴリズムを用いた敗血症性凝固線溶障害の早期予測モデルの開発
使用机器学习算法开发脓毒性凝血和纤溶性疾病的早期预测模型
  • 批准号:
    24K12133
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
アルゴリズムとアーキテクチャの協調によるベイジアンネットワークの学習推論基盤
基于算法与架构协同的贝叶斯网络学习与推理平台
  • 批准号:
    24KJ0578
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
電子状態計算のための精度保証付き量子アルゴリズムの開拓
开发一种保证精确度的量子算法来计算电子态
  • 批准号:
    24K08334
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
時間依存する非平衡系の最適な量子アルゴリズムの構築
瞬态非平衡系统最优量子算法的构建
  • 批准号:
    24K16974
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ロボットの優しい動作の為の汎用性の高い駆動・電気系非線形性補償アルゴリズムの開発
开发用于温和机器人运动的高度通用的驱动/电气系统非线性补偿算法
  • 批准号:
    24K17258
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
高齢フレイルがん患者における身体機能評価アルゴリズムの開発
老年衰弱癌症患者身体机能评估算法的开发
  • 批准号:
    24K20552
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
因果推論手法を用いた細胞療法の最適化アルゴリズムの開発
使用因果推理方法开发细胞治疗的优化算法
  • 批准号:
    24K19198
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
終末期患者のQOL向上を目指した呼吸困難治療アルゴリズム作成に関する研究
创建旨在改善绝症患者生活质量的呼吸困难治疗算法的研究
  • 批准号:
    23K21406
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
有用物質を効率的に生産する代謝ネットワークの設計アルゴリズム
设计有效产生有用物质的代谢网络的算法
  • 批准号:
    23K20386
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CT画像から解析したX線の入射方向情報を援用した患者表面線量分布の決定アルゴリズム
使用从 CT 图像分析的 X 射线入射方向信息确定患者表面剂量分布的算法
  • 批准号:
    24K21135
  • 财政年份:
    2024
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了