Benetzungseigenschaften von Pflanzenoberflächen

植物表面的润湿特性

基本信息

项目摘要

How does a drop of dew form on a plant leaf? This question points directly to the amazing wetting properties of many biological surfaces, in particular plants. They have received great interest recently in connection with the so-called "lotus-effect", i e the ability of several plants to make water bead off completely and thereby wash the leaf very effectively. Although this effect may be observed every day and is of great technological importance, as for the effective use of insecticides, its basic mechanisms are not at all understood. We want to investigate these mechanisms by means of the modern experimental tools which have been developed in recent years.
一滴露珠是如何在植物叶子上形成的?这个问题直接指向了许多生物表面,特别是植物表面惊人的湿润特性。最近,人们对所谓的“荷花效应”产生了极大的兴趣,“荷花效应”指的是几种植物能够把水珠完全吸掉,从而非常有效地洗净叶子。尽管这种影响每天都可以观察到,而且在技术上具有重要意义,但至于有效使用杀虫剂,其基本机制却根本不为人所知。我们想用近年来发展起来的现代实验工具来研究这些机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stephan Herminghaus其他文献

Professor Dr. Stephan Herminghaus的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Stephan Herminghaus', 18)}}的其他基金

Mechanical properties of dense granular assemblies in the presence of wetting liquids.
润湿液体存在下致密颗粒组件的机械性能。
  • 批准号:
    169494207
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Mikroskopische Grundlagen der mechanischen Eigenschaften feuchter Schüttgüter
潮湿散装材料机械性能的微观基础
  • 批准号:
    5365852
  • 财政年份:
    2002
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Koordinatorantrag im Schwerpunktprogramm 1052 "Benetzung und Strukturbildung an Grenzflächen"
优先计划 1052“界面润湿和结构形成”中的协调员申请
  • 批准号:
    5143798
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Benetzung auf stukturierten Substraten und Elektrowetting
结构化基材上的润湿和电润湿
  • 批准号:
    5203738
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

半有限von Neumann代数中投影集上的Wigner定理
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CUL7基因突变导致Von Hippel Lindau蛋白细胞内蓄积增多致3-M综合征软骨细胞分化异常的分子机制研究
  • 批准号:
    82302106
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非交换Weyl-von Neumann定理及其弱形式在von Neumann代数中的拓展
  • 批准号:
    12271074
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
线性保持方法在量子信息研究中的应用
  • 批准号:
    12001420
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
关于算子代数上非交换Weyl-von Neumann定理的研究
  • 批准号:
    12001437
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
模型空间上截断Toeplitz算子的可约性
  • 批准号:
    12001089
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
有限von Neumann代数的相对顺从性
  • 批准号:
    12001085
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
关于超有限II_1因子中一类算子的不变子空间和单个元生成问题的研究
  • 批准号:
    11961037
  • 批准年份:
    2019
  • 资助金额:
    29.0 万元
  • 项目类别:
    地区科学基金项目
算子代数中齐性空间的微分几何结构
  • 批准号:
    11901453
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
非交换Orlicz空间的性质及其闭子空间
  • 批准号:
    11901038
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

循環補助時von Willebrand因子の環境応答評価プラットフォーム創生
创建一个平台,用于评估循环支持期间冯维勒布兰德因子的环境反应
  • 批准号:
    23K25186
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ECMOによるvon Willebrand 因子への影響
ECMO对血管性血友病因子的影响
  • 批准号:
    24K12171
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
  • 批准号:
    2350049
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
  • 批准号:
    2400040
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Free Information Theory Techniques in von Neumann Algebras
冯诺依曼代数中的自由信息理论技术
  • 批准号:
    2348633
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
止血タンパク質の発現多様性と止血機能および止血以外の機能に関する基礎研究
止血蛋白表达多样性、止血功能及止血以外功能的基础研究
  • 批准号:
    23H02681
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Pathogenesis of thrombotic microangiopathies
血栓性微血管病的发病机制
  • 批准号:
    10608740
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Novel Broad-Spectrum Point-of-Care Coagulometer
新型广谱护理点凝血计
  • 批准号:
    10707617
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Endothelial von Willebrand factor and the tissue-specific regulation of angiogenesis and vascular integrity
内皮血管性血友病因子和血管生成和血管完整性的组织特异性调节
  • 批准号:
    MR/X021106/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Multimeric Structural Degradation of vWF in Turbulent Flows
vWF 在湍流中的多聚体结构降解
  • 批准号:
    10563289
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了