Studies on Development of A Software System for Qualitative Analysis of Dynamical Systems

动力系统定性分析软件系统的开发研究

基本信息

  • 批准号:
    02680024
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1990
  • 资助国家:
    日本
  • 起止时间:
    1990 至 1991
  • 项目状态:
    已结题

项目摘要

In engineering problem solving, analysis of nonlinear differential equations plays a crucial part. This research aimed at development of a software system which can analyze the qualitative behavior of nonlinear ordinary differential equations with two unknowns, by integrating knowledge-based and numerial methods using qualitative reasoning techniques.We have achieved the following accomphshments with respect to the above research goal :1. We have devised flow patterns as a means for representing geometric features of solution curves of ordinary differential equations. In addition, we have formulated a flow grammar which is a grammatical characterization of flow patterns one may observe in phase spaces of ordinary differential equations.2. We have devised a new method of reasoning about qualitative behaviors which operates in both bottom-up and top-down mode. The bottom-up mode follows a prescribed procedure to collect information to capture the behavior. In contrast. the top-down mode is strongly guided by the domain knowledge, attempting to derive most plausible interpretation from partial information. In normal situations, the bottom-up mode is used, which will be switched to the top-down mode once logical failure is recognized.3. We have designed and implemented a prototype system called PSX2NL and have tested it against typical. examples to evaluate the method from experimental points of view.4. We have discussed about technical issues involved in a system which can analyze more complex ordinary differential equations with three unknowns. We have partly implemented the idea.
在工程问题求解中,非线性微分方程的分析起着至关重要的作用。本研究旨在利用定性推理技术,将知识方法与数值方法相结合,开发一个能够分析两未知量非线性常微分方程定性行为的软件系统。针对上述研究目标,我们取得了以下成果:我们设计了流型来表示常微分方程解曲线的几何特征。此外,我们还制定了一种流动语法,它是人们可以在常微分方程的相空间中观察到的流动模式的语法表征。我们设计了一种新的定性行为推理方法,这种方法可以自下而上和自上而下两种模式运行。自底向上模式遵循规定的过程来收集信息以捕获行为。相比之下。自顶向下模式强烈地以领域知识为指导,试图从部分信息中得出最合理的解释。正常情况下采用自底向上的方式,一旦发现逻辑故障,就会切换到自顶向下的方式。我们设计并实现了一个名为PSX2NL的原型系统,并对其进行了典型的测试。从实验的角度对方法进行评价。我们讨论了一个可以分析更复杂的三未知数常微分方程的系统所涉及的技术问题。我们已经部分实现了这个想法。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toyoaki Nishida and Shuji Doshita: "A Geometric Approach to Total Envisioning" Proc.IJCAI-91. 1150-1155 (1991)
Toyoaki Nishida 和 Shuji Doshita:“总体构想的几何方法”Proc.IJCAI-91。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Atsushi Yamada,Toyoaki Nishida and Shuji Doshita: "Qualitative Interpreter for the Sense Teaching of the Spatial Descriptions" Proceedings of International Conference on Advanced Research on Computers in Education. 255-266 (1990)
Atsushi Yamada、Toyoaki Nishida 和 Shuji Doshita:“空间描述意义教学的定性解释器”教育计算机高级研究国际会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toyoaki Nishida,Kenji Mizutani,Atsushi Kubota,and Shuji Doshita: "Automated Phase Portrait Analysis by Integrating Qualitative and Quantitative Analysis" Proc.AAAI-91. 811-816 (1991)
Toyoaki Nishida、Kenji Mizutani、Atsushi Kubota 和 Shuji Doshita:“通过集成定性和定量分析进行自动相图分析”Proc.AAAI-91。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toyoaki Nishida, Kinji Mizutani, Atsushi Kubota, and Shuji Doshita: "Automated Phase Portrait Analysis by Integrating Qualitative and Quantitative Analysis" Proc. AAAI-91. 811-816 (1991)
Toyoaki Nishida、Kinji Mizutani、Atsushi Kubota 和 Shuji Doshita:“通过集成定性和定量分析进行自动相图分析”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Toyoaki Nishida,Kenji Mizutani,Atsushi Kubota,and Shuji Doshita: "Automated Phase Portrait Analysis by Integrating Qualitative and Quantitative Analysis" Proc.AAAIー91. 811-816 (1991)
Toyoaki Nishida、Kenji Mizutani、Atsushi Kubota 和 Shuji Doshita:“通过集成定性和定量分析进行自动相图分析”Proc.AAAI-91 (1991)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NISHIDA Toyoaki其他文献

Point of Gaze Estimation Using Corneal Surface Reflection and Omnidirectional Camera Image
使用角膜表面反射和全向相机图像进行注视点估计

NISHIDA Toyoaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NISHIDA Toyoaki', 18)}}的其他基金

Self-initiated Communication Learning Mechanism by Integrating Situation, Image, and Language
情景、图像、语言相结合的自主交流学习机制
  • 批准号:
    22650026
  • 财政年份:
    2010
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Studies on Construction and Utilization of a Common Platform for Embodied Conversational Agent Research
具身对话智能体研究通用平台的构建与利用研究
  • 批准号:
    19100001
  • 财政年份:
    2007
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Systematization of domain-specific knowledge with multiple ontologies
具有多个本体的特定领域知识的系统化
  • 批准号:
    08458079
  • 财政年份:
    1996
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Studies on a System for Automated Analysis of Dynamical Systems by Integrating Qualitative and Quantitative Analysis
定性定量分析相结合的动力系统自动分析系统研究
  • 批准号:
    04452317
  • 财政年份:
    1992
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Studies on Qualitative Analysis of Dynamical Systems and its Application to Engineering Problem Solving
动力系统定性分析及其在工程问题解决中的应用研究
  • 批准号:
    63550273
  • 财政年份:
    1988
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
  • 批准号:
    2348830
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Conference: 2024 KUMUNU-ISU Conference on PDE, Dynamical Systems and Applications
会议:2024 年 KUMUNU-ISU 偏微分方程、动力系统和应用会议
  • 批准号:
    2349508
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
CAREER: Arithmetic Dynamical Systems on Projective Varieties
职业:射影簇的算术动力系统
  • 批准号:
    2337942
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
  • 批准号:
    2340631
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Continuing Grant
Dynamical Systems with a View towards Applications
着眼于应用的动力系统
  • 批准号:
    2350184
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Continuing Grant
Conference: Dynamical Systems and Fractal Geometry
会议:动力系统和分形几何
  • 批准号:
    2402022
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Making Upper Division Mathematics Courses More Relevant for Future High School Teachers: The Case of Inquiry-Oriented Dynamical Systems and Modeling
使高年级数学课程与未来高中教师更相关:以探究为导向的动力系统和建模案例
  • 批准号:
    2337047
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了