流体力学極限の確率過程論的研究

流体动力学极限的随机过程研究

基本信息

  • 批准号:
    03640207
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1991
  • 资助国家:
    日本
  • 起止时间:
    1991 至 无数据
  • 项目状态:
    已结题

项目摘要

流体力学極限の問題をGinzburgーLandauモデル及び排除過程に対し研究した。前者は,d次元空間R^d上に分布する連続体のランダムな時間発展を与えるモデルである。流体力学極限の問題を扱うための準備として、その平衡状態の構成,特徴付け,エルゴ-ド性の証明等を行った。そこではスカラ-場のみを対象としたが,スピン場のとり得る値の空間が多様体をなすと考えた方がより一般的である。例えばHeisenberyモデルや非線形σモデルがその典型例である。このような場合も同時に扱うために,多様体に値をとる確率偏微分方程式を導入し,その解の存在と一意性,正則性等を示した。これはル-プ空間上の拡散過程の例も与える。一方後者の排除過程とは,格子点を相互作用しながら動く多数の酔歩系のモデルである。拡散型の時空のスケ-ル変換の下で,粒子系の密度場に対し大数の法則が成立し極限は非線形拡散方程式によって記述されることを証明した。粒子の飛び確率に基づく拡散係数の具体的表示も同時に与えた。関連した問題として低温極限の問題を考察した。GinzburgーLandauモデルの自己ポテンシャルが2つの底をもつ場合,対応するハミルトニアンの基底状態は一意的でない。それは無限次元空間内の有限次元部分多様体をなす。温度パラメ-タ-を0に近づけるとこ,無限次元の確率過程がこの部分多様体上の拡散過程に収束することを示した。これはDirichlet形式の観点から言えば対称測度が退化する場合を扱ったことに相当する。基確の空間が最初から有限次元多様体であっても,この問題は余り評しく調べられていなかった。更に,有限固の点集合に退化する場合も興味深い。そのためにWentzellーFreidlin型拡散過程のある領域からの平均脱出時刻を考え,その詳しい漸近展開を与える公式を導いた。あるいは,大偏差原理に対する補正項を与えたと言ってもよい。
The limit problem of fluid mechanics をGinzburg <s:1> Landauモデ に and び elimination process に for the study of fluid mechanics た. The former に, on the d-dimensional space R^d, the に distribution する is connected to the 続 body of <s:1> ラ ダムな ダムな ダムな, and the time occurrence is を and えるモデ である である である. Fluid mechanics limit の を Cha う た め の prepare と し て, そ の equilibrium の, 徴 pay け, エ ル ゴ line - ド sex and other の を っ た. そ こ で は ス カ ラ - field の み を like と seaborne し た が, ス ピ ン field の と り have る numerical の space が many others in the body を な す と exam え た party が よ り general で あ る. Examples: えばHeisenberyモデ モデ や や non-linear σモデ がそ がそ <s:1> typical examples: である. こ の よ う も な occasion at the same time に Cha う た め に, more on others body に numerical を と る probabilistic partial differential equations を import し, そ の と a meaning existence の solution, regularity and other を shown し た. <s:1> れ れ れ プ プ -プ scattered processes in <s:1> 拡 on プ space れ examples える and える. One side of the latter <s:1> exclusion process と と, grid point を interaction <s:1> ながら motion く majority <s:1> 酔 step system モデ モデ である. Company, dispersion type の space-time の ス ケ - ル variations in の で, particle is の density field に し の large Numbers law established が seaborne し limit は nonlinear company, dispersion equations に よ っ て account さ れ る こ と を prove し た. The specific representation of the particle <s:1> flight び accuracy に basis づく拡 dispersion coefficient <e:1> is に simultaneously に and えた. The related <s:1> た problem と て て low-temperature limit <s:1> problem を examines <s:1> た. Ginzburg ー Landau モ デ ル の himself ポ テ ン シ ャ ル が 2 つ の bottom を も つ occasions, 応 seaborne す る ハ ミ ル ト ニ ア ン の basal state は で of な い. Youdaoplaceholder0 それ in infinite-dimensional space, <s:1> finite-dimensional partial multiples をなす. Temperature パ ラ メ タ - を 0 に nearly づ け る と こ, infinite dimensional の probabilistic process が こ の の on the part of many others in the process company, in the に 収 beam す る こ と を shown し た. こ れ は Dirichlet form の 観 point か ら said え ば polices according to measure が degradation す る occasions を Cha っ た こ と に quite す る. The basic <s:1> space が the initial ら finite-dimensional polymorphism であって が, the <s:1> <s:1> problem であって yu Jue's evaluation of the く tuning べられて な な った った った. It is more に, and in the case of finite solid <s:1> point sets に degenerate する, it is more interesting to に. そ の た め に Wentzell ー Freidlin type company, the process の あ る field か ら の average out moment を え, そ の detailed し い を asymptotic expansion and え る formula を guide い た. The principle of large deviation に for the する correction term を and えたと words って って よ よ よ ある.

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Funaki: "The stochastic partial differential equation with values in a manifold." Journal of Functional Analysis. (1992)
T.Funaki:“具有流形值的随机偏微分方程。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Funaki: "Gydrodynamic limit of oneーdimensional exclusion processes with speed change." Annals of Probability. 19. 245-265 (1991)
T.Funaki:“速度变化的一维排除过程的流体动力学极限。” 19. 245-265 (1991)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Funaki: "The reversible measures of multiーdimensional ginzburgーLandau type continuum model." Osaka Journal of Mathematics. 28. 463-494 (1991)
T.Funaki:“多维 ginzburg-Landau 型连续体模型的可逆测度。” 大阪数学杂志 28. 463-494 (1991)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Funaki: "The hydrodynamic limit for a system with interactions prescribed by GinzburgーLandau type random Hamiltonian." Probability Theory and Related Fields. 90. 519-562 (1991)
T.Funaki:“Ginzburg-Landau 型随机哈密顿量规定的系统的流体动力学极限。” 90. 519-562 (1991)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

舟木 直久其他文献

Exotic electronic states produced by strong spin-orbit coupling in complex Ir oxides
复杂铱氧化物中强自旋轨道耦合产生的奇异电子态
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    日髙 宏;中井 陽一;小島 隆夫;渡部 直樹;舟木 直久;熊谷晋一郎;H. Takagi
  • 通讯作者:
    H. Takagi
Global McKay correspondence for quotient surface singularities
商表面奇点的全局麦凯对应关系
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carl Frederik Werner;Shoko Takenaga;Hidenori Taki;Kazuaki Sawada;Michael J. Schöning;Y. Tsunemi;H. Takagi;舟木 直久;西澤秀明,大山幸希,土肥俊郎,曾田英雄,金 聖祐,佐野泰久,黒河周平,王 成武;I. Nakamura
  • 通讯作者:
    I. Nakamura
Nonlinear stochastic PDEs : hydrodynamic limit and Burgers' turbulence
非线性随机偏微分方程:流体动力学极限和伯格斯湍流
  • DOI:
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    舟木 直久;W. Woyczynski
  • 通讯作者:
    W. Woyczynski
革新的 “Plasma fusion CMP装置”の設計・試作(第9報) -ダイヤモンド単結晶基板の加工特性-
创新型“等离子熔融CMP设备”的设计与原型机(第9次报告)-金刚石单晶基板的加工特性-
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Carl Frederik Werner;Shoko Takenaga;Hidenori Taki;Kazuaki Sawada;Michael J. Schöning;Y. Tsunemi;H. Takagi;舟木 直久;西澤秀明,大山幸希,土肥俊郎,曾田英雄,金 聖祐,佐野泰久,黒河周平,王 成武
  • 通讯作者:
    西澤秀明,大山幸希,土肥俊郎,曾田英雄,金 聖祐,佐野泰久,黒河周平,王 成武
擬一次元カルコゲナイドTa2NiCh5 (Ch = S , Se and Te)における相転移と電子相図
准一维硫族化物 Ta2NiCh5 (Ch = S、Se 和 Te) 的相变和电子相图
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tatsuya Iwata;Hideo Doi;Koichi Okumura;Tomoko Horio;Toshiaki Hattori;Kazuhiro Takahashi;Kazuaki Sawada;舟木 直久;魯楊帆,高山知弘,Andreas W. Rost,河野洋人,高木英典
  • 通讯作者:
    魯楊帆,高山知弘,Andreas W. Rost,河野洋人,高木英典

舟木 直久的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('舟木 直久', 18)}}的其他基金

大規模相互作用系および特異な確率偏微分方程式の研究
大规模相互作用系统与奇异随机偏微分方程研究
  • 批准号:
    24K06752
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on large scale interacting systems and related stochastic partial differential equations
大规模相互作用系统及相关随机偏微分方程研究
  • 批准号:
    18H03672
  • 财政年份:
    2018
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
特異性をもつ界面モデルの確率解析
具有奇点的界面模型的随机分析
  • 批准号:
    17654020
  • 财政年份:
    2005
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
界面モデルの濡れ転移に対する確率力学的アプローチ
界面模型润湿转变的随机力学方法
  • 批准号:
    13874015
  • 财政年份:
    2001
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
非平衡統計力学に於ける確率過程論的諸問題の研究
非平衡统计力学中的随机过程问题研究
  • 批准号:
    63740112
  • 财政年份:
    1988
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
無限次元確率微分方程式とその応用
无限维随机微分方程及其应用
  • 批准号:
    57740116
  • 财政年份:
    1982
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了