Co-operative Research in Representation Theory
表示论合作研究
基本信息
- 批准号:05302001
- 负责人:
- 金额:$ 5.82万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Co-operative Research (A)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Toshiyuki Tanisaki, with Masaaki Kashiwara, succeeded in proving the Kazhdan-Lusztig type conjecture for the characters of irreducible highest weight representations of Kac-Moody Lie algebras. This completed the so-called Lusztig program, which intended to prove Kazhdan-Lusztig type conjectures for Kac-Moody Lie algebras, semisimple algebraic groups, and quantum groups whose parameters are roots of unity, simultaneously. (The equivalence of these three conjectures has already been proved by other people.) Eiichi Bannai, with Etsuko Bannai, proved the modular invariance property of the fusion algebras at algebraic level constructed from Hamming association scheme. Bannai, with Michio Ozeki, also showed that one can get modular forms by putting Jacobi theta functions into invariant polynomials of certain finite unitary reflection groups. These investigations of Bannai and his collaborators are opening a new reserch area of algebraic combinatorics. Mitsuhiro Takeuchi introduced the notion of q-representations of quantum groups, and studied q-representations of quantum special linear groups. Takeuchi also described all the automorphisms of the quantum general linear groups, and all the automorphisms and endomorphisms of quantum special linear groups. Tomoyuki Yoshida studied the number of endomorhisms between finite groups. One of his results says that the number of endomorphisms from a finite abelian group A to a finite group G is divisible by the greatest common divisors of the orders of A and G.Many of other remarkable results are reported in the Proceedings of the 12th Symposium in Algebraic Combinatorics held at Tokyo University in July, 1995.
谷崎Toshiyuki Tanisaki和柏原Masaaki Kashiwara成功地证明了Kac-Moody李代数的不可约最高权表示的Kazhdan-Lusztig型猜想。这完成了所谓的Lusztig计划,该计划旨在同时证明Kac-Moody李代数,半简单代数群和参数为单位根的量子群的Kazhdan-Lusztig型猜想。(这三个猜想的等价性已经被其他人证明了。)Eiichi Bannai和Etsuko Bannai证明了由Hamming关联方案构造的融合代数在代数水平上的模不变性。Bannai,和Michio Ozeki一起,也证明了人们可以通过将雅可比函数化为某些有限酉反射群的不变多项式而得到模形式。班奈和他的合作者的这些研究为代数组合学开辟了一个新的研究领域。引入量子群的q-表示概念,研究了量子特殊线性群的q-表示。Takeuchi还描述了量子一般线性群的所有自同构,以及量子特殊线性群的所有自同构和自同态。Tomoyuki Yoshida研究了有限群之间的内同子数。他的一个结果是有限阿贝尔群a到有限群G的自同态数可以被a和G的最大公约数整除。其他许多重要结果发表在1995年7月在东京大学举行的第12届代数组合学术研讨会论文集上。
项目成果
期刊论文数量(26)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
竹内光弘: "Quotient spaces for Hopf algebras" Communications in Algebra. 22. 2503-2523 (1994)
Mitsuhiro Takeuchi:“Hopf 代数的商空间”《代数通讯》22. 2503-2523 (1994)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
坂内英一: "Classification of small spin models" Kyushu Journal of Mathematics. 48. 185-200 (1994)
Eiichi Sakauchi:“小型自旋模型的分类”九州数学杂志48。185-200(1994)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
E.Bannai: "Association schemes and fusion algebras(an introduction)" Journal of Algebraic Combinatorics. 2. 327-344 (1993)
E.Bannai:“关联方案和融合代数(简介)”代数组合学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Eiichi Bannai and MIchio Ozeki: "Construction of Jacobi forms from certain combinatorial polynomials" Proc. Japan Acad., Ser.A. (to appear).
Eiichi Bannai 和 Michio Ozeki:“从某些组合多项式构造雅可比形式”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWANAKA Noriaki其他文献
KAWANAKA Noriaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWANAKA Noriaki', 18)}}的其他基金
Representation theory of Algebraic Groups and Quantum Groups
代数群和量子群的表示论
- 批准号:
12304002 - 财政年份:2000
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Representations of Groups, Lie Algebras, and Algebras
群、李代数和代数的表示
- 批准号:
04452004 - 财政年份:1992
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Research of quantum group actions on operator algebras
算子代数上的量子群作用研究
- 批准号:
21K03280 - 财政年份:2021
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Commutative Spaces, Their Symmetries, and Geometric Quantum Group Theory
非交换空间、它们的对称性和几何量子群论
- 批准号:
2001128 - 财政年份:2020
- 资助金额:
$ 5.82万 - 项目类别:
Standard Grant
Research of quantum group actions on operator algebras
算子代数上的量子群作用研究
- 批准号:
18K03317 - 财政年份:2018
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conformal field theory and quantum group
共形场论和量子群
- 批准号:
17K05194 - 财政年份:2017
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantization of the fundamental group by dual quantum group
双量子群对基本群的量子化
- 批准号:
17K18728 - 财政年份:2017
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Study of group-quantum group actions on operator algebras
算子代数群量子群作用的研究
- 批准号:
15K04889 - 财政年份:2015
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vertex operator algebras and quantum group
顶点算子代数和量子群
- 批准号:
25400009 - 财政年份:2013
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of quantum group actions on von Neumann algebras
冯诺依曼代数的量子群作用研究
- 批准号:
24740095 - 财政年份:2012
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Cyclic homology and quantum group symmetry
循环同调性和量子群对称性
- 批准号:
EP/E043267/1 - 财政年份:2007
- 资助金额:
$ 5.82万 - 项目类别:
Fellowship
Irreducible unitary representation of non compact quantum group SUq(1,1) and its quantum symmetric space
非紧量子群SUq(1,1)及其量子对称空间的不可约酉表示
- 批准号:
11440052 - 财政年份:1999
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (B)