Irreducible unitary representation of non compact quantum group SUq(1,1) and its quantum symmetric space
非紧量子群SUq(1,1)及其量子对称空间的不可约酉表示
基本信息
- 批准号:11440052
- 负责人:
- 金额:$ 9.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The target of this research had been put in such a high level so that we were not able to carry out all the projects on the occasion that we asked for this research grant. On the process of our research concerning the quantum symmetric space, we recognized a quantum 4-dimensional spheres which are not realized as the quantum symmetric space, and we also succeeded to have an explicit construction of a quantum vector bundle on such spaces which are regarded to be very basic in the direction of quantum gauge theories leaving lots of problems to be studied in the future. Then, at the same time, we faced to compute the cyclic cohomologies of those quantum manifolds so that we decided to use a special type of computer system which had never tried to use for such a problem coming from pure mathematics due to the extremely huge amount of computations by hands. However, this problem of computer aided computation is still left together with the tunung of the computer system itself. On the other hand, a general framework to deal with the objects which are so called the locally compact quantum groups was eventually finished and already submitted to a journal in France. By making use of this framework, we are now ready to proceed in the direction of the very detailed study of the explicitly given examples of the quantum groups of the non compact type.
这项研究的目标被置于如此高的水平,以至于我们无法在我们要求这笔研究资助的情况下开展所有项目。在我们对量子对称空间的研究过程中,我们认识到了一个量子四维球面,但这类球面并不是量子对称空间,我们还成功地在这类空间上构造了一个量子向量丛,这在量子规范理论的方向上是非常基本的,还有许多问题有待于进一步的研究。然后,在同一时间,我们面临着计算这些量子流形的循环上同调,所以我们决定使用一种特殊类型的计算机系统,这种计算机系统从未尝试过用于这样一个来自纯数学的问题,因为手工计算量非常巨大。然而,这个计算机辅助计算的问题仍然与计算机系统本身的调试一起留下。另一方面,一个处理所谓的局部紧量子群的一般框架最终完成,并已提交给法国的一个期刊。通过利用这个框架,我们现在可以开始对明确给出的非紧型量子群的例子进行非常详细的研究了。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dabruwski, Landi, MASUDA: "Instantons on the quantum 4-spheres S^4_8"Communications in Mathematical Physics. 221. 161-168 (2001)
Dabruwski、Landi、MASUDA:“量子 4 球体 S^4_8 上的瞬时”数学物理通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
L.Dybrauski, G.Landi and T.MASUDA: "Instantons on the quantum 4-spheres S^4q"Communications in Mathematical Physics. 221. 161-168 (2001)
L.Dybrauski、G.Landi 和 T.MASUDA:“量子 4 球体 S^4q 上的瞬时”数学物理通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Dabrowski-Landi-Masuda: "Instantons on the Quantum 4-Spheres S^4"Communications in Mathematical Physics. 221. 161-168 (2001)
Dabrowski-Landi-Masuda:“量子 4 球体 S^4 上的瞬时”数学物理通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
L. Dabrowski, G. Landi, T. Masuda: "Instantons on the Quantum 4-Spheres S^4_q"Communications in Mathematical Physics. 221. 161-168 (2001)
L. Dabrowski、G. Landi、T. Masuda:“量子 4 球体 S^4_q 上的瞬时”数学物理通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MASUDA Tetsuya其他文献
Carboxymethylated-cellulose Nanofibers May Confer Physiological Functions Compatible to the Gastrointestinal Tract?
羧甲基化纤维素纳米纤维可以赋予与胃肠道相容的生理功能吗?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
YAMANOUE Miki;POPUANG Nuntanut;MAEKAWA Kazuki;OGAWA Takenobu;MASUDA Tetsuya;TANI Fumito - 通讯作者:
TANI Fumito
Mucosal Education of Dendritic Cells Mediated by Intestinal Epithelial Cells and Luminal Contents
肠上皮细胞和管腔内容物介导的树突状细胞的粘膜教育
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
TANI Fumito*;TERAI Orie;TAKEUCHI Anri;MASUDA Tetsuya - 通讯作者:
MASUDA Tetsuya
MASUDA Tetsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MASUDA Tetsuya', 18)}}的其他基金
Creation of probiotic drink yoghurt for artificial dialysis patients
为人工透析患者制作益生菌酸奶饮料
- 批准号:
16K12741 - 财政年份:2016
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Elucidation of the structure-function relationships in sweet-tasting proteins by x-ray analysis at atomic resolution
通过原子分辨率的 X 射线分析阐明甜味蛋白质的结构与功能关系
- 批准号:
22580105 - 财政年份:2010
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the elicitation of sweetness of sweet-tasting proteins.
甜味蛋白质甜味诱导的研究。
- 批准号:
19780074 - 财政年份:2007
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Noncommutative geometry of quantum complex upper half plane and discrete subgroup of a non-compact quantum group
量子复数上半平面的非交换几何和非紧量子群的离散子群
- 批准号:
09640006 - 财政年份:1997
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the relation between the agglutination of milk fat globule and the uneven distribution of bacteria in raw bovine milk
生牛乳中脂肪球凝集与细菌分布不均关系的研究
- 批准号:
06660342 - 财政年份:1994
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Pluriharmonic maps into a compact symmetric space and integrable systems
多谐波映射到紧对称空间和可积系统
- 批准号:
22K03293 - 财政年份:2022
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Grassmann geomety of surfaces in a Riemannian symmetric space
黎曼对称空间中曲面的格拉斯曼几何
- 批准号:
23540091 - 财政年份:2011
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of submanifolds in a symmetric space by using infinite dimensional geometry
利用无限维几何研究对称空间中的子流形
- 批准号:
18540099 - 财政年份:2006
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Sciences: The Horocycle Radon Transform on a Symmetric Space
数学科学:对称空间上的 Horocycle Radon 变换
- 批准号:
8896108 - 财政年份:1987
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Mathematical Sciences: The Horocycle Radon Transform on a Symmetric Space
数学科学:对称空间上的 Horocycle Radon 变换
- 批准号:
8601965 - 财政年份:1986
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant
Algebraic-geometrical and arithmetical study of a quotient space of a Riemannian symmetric space by an arithmetic group
通过算术群对黎曼对称空间的商空间进行代数几何和算术研究
- 批准号:
60540038 - 财政年份:1985
- 资助金额:
$ 9.22万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Mathematical Sciences: Analysis on Fundamental Domains for GL (n,Z) in the Symmetric Space of Positive Matrices and Related Questions
数学科学:正矩阵对称空间中GL(n,Z)的基本域分析及相关问题
- 批准号:
8303128 - 财政年份:1983
- 资助金额:
$ 9.22万 - 项目类别:
Standard Grant