退化楕円型境界値問題に関する調和解析とウェーブレット解析
简并椭圆边值问题的调和分析和小波分析
基本信息
- 批准号:05740076
- 负责人:
- 金额:$ 0.64万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
本研究では、次の3つのタイプの新しい成果を得た:(1)強擬凸領域上のベルグマン・ラプラシアンを例とするような境界で退化するある種の2階楕円形作用素Lの調和解析に関する基本的な結果を証明し、それを用いて、Lu=0の解からなるHardy空間のアトム及び拡散過程による特徴付けを得た。さらに、強擬凸領域上の解析関数からなるHardy空間に関するWojtaszczykの予想の解決も含むような結果も、応用として証明した。(2)C^nの単位球上のBMOA関数のCarleson測度と拡散過程による特徴付けを証明した。これにより、BMOA関数の確率論的取扱いが可能になった。応用として、Littlewood-Paley型の等式ならびに、BMOA関数のCarleson測度による特徴付けの確率論的な別証を与え、Garnett-Jones型の定理を単位球上の不変調和関数に対して確率論的手法で証明した。(3)複素一変数のBloch関数はFourier級数、作用素論、等角写像論において重要な役割をはたす。このBloch関数の多変数への一般化が最近、Krantz,Timoneyなどにより得られた。われわれは、多変数Bloh関数をベルグマン計量の幾何と拡散過程を用いて特徴付け、その応用として、Bloh関数のBergman-Carleson測度による特徴付けを証明し、また、境界での発散のオーダーを詳細に記述した。後者は、一変数のMakarovの定理の多変数化である。
In this study, three new results are obtained:(1) Basic results on harmonic analysis of a class of second-order elliptic actor-L on a strongly pseudoconvex domain are proved, and characteristics of Hardy spaces and dispersion processes are obtained. The analytic relations in Hardy space are solved by using the method of proof. (2)C The Carleson measure of the BMOA relation on a single sphere is proved to be characteristic of the dispersion process. This is the first time that the BMOA has been used in the study of accuracy. By using the Littlewood-Paley type equation, the Carleson measure of BMOA relation, and the Garnett-Jones type theorem, the invariance relation and the accuracy theory of BMOA relation are proved. (3)Bloch relation of complex prime number is Fourier series, action element theory and equiangular image theory. The number of Bloch entries and the number of generalizations are recent, Krantz,Timoney, etc. This paper describes in detail the application of Bloh correlation to geometric and dispersion processes in metrology, and the proof of Bloh correlation and Bergman-Carleson measure. The latter is opposite, a number of Makarov's theorem and a number of changes.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
新井 仁之: "Some characterizations of Bloch functions on strongly pseudo convex domains" Tokyo J.Math.(掲載予定).
Hitoshi Arai:“强伪凸域上布洛赫函数的一些特征”Tokyo J.Math(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
新井 仁之其他文献
視覚とウェーブレット-錯視はどのようにして現れるか-
视觉和小波——视错觉是如何出现的?
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
S.Moriguchi;A.Shioura;K.Murota;A.Tero;H.Haga;A.Tero;A.Tero;T.Nakagaki;新井 仁之;新井 仁之;新井 仁之 - 通讯作者:
新井 仁之
白血病幹細胞化の成立機序
白血病干细胞转化机制
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Ishii H;Iwatsuki M;Ieta K;Ohta D;Haraguchi N;Mimori K;Mori M.;新井 仁之;赤司浩一 - 通讯作者:
赤司浩一
A nonlinear model of visual information processing and visual illusions
视觉信息处理和视觉错觉的非线性模型
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Hitoshi Arai;Shinobu Arai;新井仁之;新井仁之;新井仁之;新井仁之;新井仁之;Hitoshi Arai;新井 仁之 - 通讯作者:
新井 仁之
ウェーブレット分解で見る,ある種の傾き錯視における類似性,(研究ノート)
通过小波分解看到的某些倾斜错觉的相似性(研究笔记)
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Hosokawa;Takuya;新井仁之;T.Nakazi;新井 仁之 - 通讯作者:
新井 仁之
線形代数 基礎と応用
线性代数基础与应用
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Sakamoto;Y.;Jun Soo Choa;新井仁之;Takuya Hosokawa;新井 仁之;Keiji Izuchi;勘甚裕一;Keiji Izuchi;新井仁之;新井仁之;新井仁之 - 通讯作者:
新井仁之
新井 仁之的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('新井 仁之', 18)}}的其他基金
ウェーブレット・フレームによる視知覚の数理モデルベースの深層学習とその応用
基于小波帧视觉感知数学模型的深度学习及其应用
- 批准号:
24K06820 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
調和解析的方法によるディジタル・フィルタと非線形画像処理の研究及びその応用
调和分析方法的数字滤波器和非线性图像处理及其应用研究
- 批准号:
19H01801 - 财政年份:2019
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
調和解析的方法による視覚・錯視の研究の機械学習への応用
使用调和分析方法进行视觉和视错觉研究在机器学习中的应用
- 批准号:
18K18716 - 财政年份:2018
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
ウェーブレットによる視覚情報処理と錯視の研究
利用小波进行视觉信息处理和视错觉的研究
- 批准号:
16654026 - 财政年份:2004
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Exploratory Research
多様体上の退化楕円型擬微分方程式と多変数複素解析
流形上的简并椭圆伪微分方程和多变量复分析
- 批准号:
08640155 - 财政年份:1996
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
退化楕円型境界値問題の調和解析とその多変数複素解析への応用
简并椭圆边值问题的调和分析及其在多元复分析中的应用
- 批准号:
07640158 - 财政年份:1995
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
境界で退化する楕円型偏微分作用素の調和解析とその多変数複素解析への応用
边界退化椭圆偏微分算子的调和分析及其在多元复分析中的应用
- 批准号:
06740090 - 财政年份:1994
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
負曲率多様体上の楕円型作用素の調和解析とウェーブレット解析
负曲率流形上椭圆算子的调和分析与小波分析
- 批准号:
04740063 - 财政年份:1992
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
非コンパクト・リーマン多様体上の調和解析とその多変数関数論への応用
非紧黎曼流形的调和分析及其在多元函数理论中的应用
- 批准号:
03740067 - 财政年份:1991
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
多様体上の調和解析の研究とその応用
流形调和分析及其应用研究
- 批准号:
02740062 - 财政年份:1990
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)














{{item.name}}会员




