Stability of Shock Waves under Hyperbolic Dissipation
双曲线耗散下冲击波的稳定性
基本信息
- 批准号:526003069
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project studies PDE systems of compressible fluid dynamics that model the dissipative mechanisms of viscosity and heat conduction not parabolically as the classical Navier-Stokes-Fourier (NSF) description, but, like the non-dissipative part of the evolution, through hyperbolic operators. The issues of possible non-uniqueness, conceivable wild solutions, likely turbulence, and hoped for vanishing-viscosity limit arise for these models just as for the classical one. However, they appear on different, hyperbolic scales. To preexamine these scales, the project exemplarily investigates the stability of prototypical shock waves in hyperbolic-hyperbolic models, aiming at (a) an understanding as good as the presently existing theory for shock waves in the hyperbolic-parabolic setting and (b) a description of limits from the hyperbolic-hyperbolic scales to the classical hyperbolic-parabolic scale. The main emphasis is on second-order systems that consist exclusively of the five conservation laws for mass, momentum and energy, and incorporate viscosity and heat conduction through operators using second-order space and time derivatives of the state variables. In recent years, the literature has discussed such models notably in the relativistic setting. A smaller part of the project deals with (non-relativistic) hyperbolic models of first order in which the dissipation is described by relaxing balance laws for additional fields, in the spirit of Extended Thermodynamics. The scaling limits we plan to study from the point of view of shock wave stability are that of infinite light speed, i.e., from second-order hyperbolic-hyperbolic to classical compressible NSF, and that of vanishing relaxation times, i.e., from first-order hyperbolic-hyperbolic to classical compressible NSF.
该项目研究可压缩流体动力学的PDE系统,该PDE系统不像经典的Navier-Stokes-Fourier(NSF)描述那样抛物线地模拟粘性和热传导的耗散机制,而是像演化的非耗散部分一样,通过双曲算子。可能的非唯一性,可想象的野生解决方案,可能的湍流,并希望消失的粘度极限的问题出现在这些模型中,就像经典的。然而,它们出现在不同的双曲线尺度上。为了预先检查这些尺度,该项目示例性地研究了双曲-双曲模型中原型冲击波的稳定性,目的是(a)与双曲-抛物线设置中的冲击波的现有理论一样好的理解和(B)描述从双曲-双曲尺度到经典双曲-抛物线尺度的限制。主要重点是二阶系统,包括专门的五个守恒定律的质量,动量和能量,并纳入粘度和热传导通过运营商使用二阶空间和时间导数的状态变量。近年来,文献讨论了这样的模型,特别是在相对论设置。该项目的一小部分涉及(非相对论性)双曲模型的一阶,其中耗散是通过放松平衡定律的额外领域,在扩展热力学的精神。我们计划从激波稳定性的角度研究的尺度极限是无限光速,即,从二阶双曲-双曲到经典可压缩NSF,以及弛豫时间消失,即,从一阶双曲-双曲到经典可压缩NSF。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Heinrich Freistühler其他文献
Professor Dr. Heinrich Freistühler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Heinrich Freistühler', 18)}}的其他基金
Quasilinear symmetric hyperbolic-hyperbolic systems of second or mixed order, with applications to relativistic fluid dynamics
二阶或混合阶拟线性对称双曲-双曲系统,及其在相对论流体动力学中的应用
- 批准号:
423781085 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grants
Stability of diffuse fluidic phase boundaries
扩散流体相边界的稳定性
- 批准号:
167159088 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Nicht-strikte Hyperbolizität am Beispiel der Gleichungen der Magnetohydrodynamik: Riemannsches Anfangswertproblem, Langzeitstabilität nichtlinearer Wellen und Limes verschwindender Dissipation
以磁流体动力学方程为例的非严格双曲性:黎曼初值问题、非线性波的长期稳定性和消失耗散的极限
- 批准号:
5383049 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
基于“shock and kill”策略研究两株深海链霉菌中HIV潜伏激活的活性成分
- 批准号:41676130
- 批准年份:2016
- 资助金额:72.0 万元
- 项目类别:面上项目
基于24周事件新一代CME/shock到达时间物理预报模式研究
- 批准号:41474153
- 批准年份:2014
- 资助金额:90.0 万元
- 项目类别:面上项目
相似海外基金
Stability of Shock Waves and Related Structures in Combustion Models, Thin Film Flows, and General Conservative Systems
燃烧模型、薄膜流和一般保守系统中冲击波和相关结构的稳定性
- 批准号:
0500988 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Stability of converging hydraulic jumps and gaseous shock waves
会聚水跃和气体冲击波的稳定性
- 批准号:
278442-2004 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Master's
Stability of converging hydraulic jumps and gaseous shock waves
会聚水跃和气体冲击波的稳定性
- 批准号:
278442-2003 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Nonlinear waves in continua and analysis of shock formation and stability
连续体中的非线性波以及激波形成和稳定性分析
- 批准号:
4039-1994 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonlinear waves in continua and analysis of shock formation and stability
连续体中的非线性波以及激波形成和稳定性分析
- 批准号:
4039-1994 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonlinear waves in continua and analysis of shock formation and stability
连续体中的非线性波以及激波形成和稳定性分析
- 批准号:
4039-1994 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonlinear waves in continua and analysis of shock formation and stability
连续体中的非线性波以及激波形成和稳定性分析
- 批准号:
4039-1994 - 财政年份:1994
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
1) Stability of converging cylindrical shock waves 2) Fluidic ignitors 3) Twin jet stabliity
1) 会聚圆柱形冲击波的稳定性 2) 流体点火器 3) 双射流稳定性
- 批准号:
4206-1991 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
1) Stability of converging cylindrical shock waves 2) Fluidic ignitors 3) Twin jet stabliity
1) 会聚圆柱形冲击波的稳定性 2) 流体点火器 3) 双射流稳定性
- 批准号:
4206-1991 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
1) Stability of converging cylindrical shock waves 2) Fluidic ignitors 3) Twin jet stabliity
1) 会聚圆柱形冲击波的稳定性 2) 流体点火器 3) 双射流稳定性
- 批准号:
4206-1991 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual