EsCUT: Entropy-stable high-order CUT-cell discontinuous Galerkin methods
EsCUT:熵稳定高阶 CUT 单元不连续 Galerkin 方法
基本信息
- 批准号:526031774
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of this project is the development of new stabilisation techniques to obtain robust and efficient entropy-stable numerical methods for non-linear hyperbolic conservation laws on cut-cell meshes for demanding simulations of under-resolved flows in complex geometries. These new high-resolution, structure-preserving methods will be designed for novel solution concepts such as dissipative weak solutions. Nonlinear hyperbolic balance laws play a crucial role in many important applications such as aircraft design and environmental/climate research. Two major challenges for high-resolution numerical simulation methods for these applications are complex geometries and under-resolved features, necessarily present in turbulent flows. To solve these issues, two types of stabilisation are required: (i) cut-cell stabilisations to cope with time step restrictions of small cut cells (ii) stabilisation of the baseline scheme for under-resolved flows and turbulence. To avoid overly dissipative schemes and pave the way to a better understanding of turbulent flows in complex geometries, we will develop novel entropy-stable high-resolution schemes with robust cut-cell stabilisations for discontinuous Galerkin methods. The basic idea is to reformulate cut-cell stabilisations in a first step to make them approachable by an entropy analysis. Based thereon, we will analyse the stability properties in detail and develop novel approaches guaranteeing entropy stability properties. The final deliverable of this project are entropy-stable DG methods on cut-cell meshes that can be used efficiently with explicit time integration methods under reasonable time step constraints for the multi-dimensional compressible Euler equations. In an upcoming extension of this project, we plan to extend these novel algorithms to the compressible Navier-Stokes equations and apply them to the simulation of turbulent behaviour in complex geometries, in particular in the high Reynolds number regime.
该项目的目的是开发新的稳定化技术,以获得强大的和有效的熵稳定的数值方法,非线性双曲守恒律的切割细胞网格要求模拟欠解析流在复杂的几何形状。这些新的高分辨率,结构保持方法将被设计用于新的解决方案的概念,如耗散弱解。非线性双曲平衡律在许多重要的应用中起着至关重要的作用,如飞机设计和环境/气候研究。这些应用的高分辨率数值模拟方法的两个主要挑战是复杂的几何形状和分辨率不足的功能,必然存在于湍流。为了解决这些问题,需要两种类型的稳定化:(i)切割单元稳定化,以科普小切割单元的时间步长限制(ii)稳定化的基线计划,为欠分辨率的流动和湍流。为了避免过度耗散的计划,并铺平道路,以更好地了解湍流在复杂的几何形状,我们将开发新的熵稳定的高分辨率计划与强大的切割细胞stabilisations的不连续Galerkin方法。其基本思想是在第一步重新制定削减细胞stabilisations,使他们接近的熵分析。在此基础上,我们将详细分析稳定性,并开发新的方法,保证熵稳定性。该项目的最终成果是切割网格上的熵稳定DG方法,该方法可以在合理的时间步长约束下有效地与显式时间积分方法一起用于多维可压缩欧拉方程。在即将到来的扩展这个项目中,我们计划将这些新的算法扩展到可压缩的Navier-Stokes方程,并将其应用于复杂几何形状的湍流行为的模拟,特别是在高雷诺数制度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christian Engwer其他文献
Professor Dr. Christian Engwer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Christian Engwer', 18)}}的其他基金
Mass-conservative coupling of bulk and surface processes on implicit, time-dependent domains
隐式瞬态域上体积和表面过程的质量守恒耦合
- 批准号:
257639540 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
HyperCut II -- Stabilized higher order DG schemes for hyperbolic conservation laws on cut cell meshes
HyperCut II——切割单元网格上双曲守恒定律的稳定高阶 DG 方案
- 批准号:
439956613 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
BlockXT – Block methods to transparently accelerate and vectorise time dependent simulations
BlockXT – 透明地加速和矢量化时间相关仿真的块方法
- 批准号:
504505951 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
- 批准号:
10096988 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Computational Multi-Models Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings (M2DESCO)
计算多模型支持安全设计
- 批准号:
10110861 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
RHEOLOGY, ENTROPY PRODUCTION AND RATCHETING OF DEFORMABLE ACTIVE SYSTEMS
可变形主动系统的流变学、熵产生和棘轮
- 批准号:
2321925 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Design and Discovery of Entropy-Stabilized Perovskite Halides for Optoelectronics
合作研究:用于光电子学的熵稳定钙钛矿卤化物的设计和发现
- 批准号:
2421149 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Multifunctional High Entropy Carbide and Boride (HECARBO) Ceramic Composites: Compositional Space, Novel Synthesis, and Property Tailoring
多功能高熵碳化物和硼化物 (HECARBO) 陶瓷复合材料:成分空间、新颖合成和性能定制
- 批准号:
EP/Y020804/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Bridging the atomic scale and the mesoscale in the characterization of defect production and evolution in high entropy alloys
合作研究:在高熵合金缺陷产生和演化表征中连接原子尺度和介观尺度
- 批准号:
2425965 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: The Effect of Trial-Level Lexical Entropy on Language Processing
职业:试用级词汇熵对语言处理的影响
- 批准号:
2337698 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
- 批准号:
2350049 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
High-Entropy Alloy Nanocrystals with Controlled Compositions and Surface Structures
成分和表面结构可控的高熵合金纳米晶
- 批准号:
2333595 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Liquid metal solvents for high entropy and atomically configured systems
用于高熵和原子配置系统的液态金属溶剂
- 批准号:
DP240101086 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects