Supersymmetric Integrable Theory and String Moedl

超对称可积理论与弦模型

基本信息

  • 批准号:
    06640392
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1996
  • 项目状态:
    已结题

项目摘要

In the present research project, we have investigated the integrable system, that has been developed through the interaction between mathematics and theoretical physics. We started our research by focusing our attention on the structure of the supersymmetric version of the intergrable system and the perturbation theory in the superspace. In the first year, in connection with solvable models, we have studied the supersymmetric sine-Gordon theory in the framework of perturbation theory formulated in superspace. Based on the result which has been obtained for N=2 case, we have examined the possible extension of the sine-Gorden theory to the N=4 case, by applying the N=4 chiral superspace formalism in collaboration with the people at University of Tokyo. The conservation laws at the classical level as well as at the quantum level have been studied utilizing the perturbation theory. Further, we investigated the non-commutative differential calculus for the supersymmetric quatum groups which … More are realized by supersymmetric quantum plane (space). In the Iiterature [1], a review on the quantum space and quantum deformation of space-time symmetry has been given. On the other hand, in the second and the third (last) years of this research project, we have investigated the higher-twist operators, twist-3 and twist-4, which appear in the nucleon's spin structure functions g_1 and g_2, in the framework of the perturbative QCD and the renormalization group method. This was carried out with the people at Hiroshima University. In the last year, based on what we have obtained in the previous year, we studied the duality in the supersymmetric sigma models in collaboration with Dr.C.K.Zachos from the Argonne National Laboratory. We further explored the possble extention to the N=2 case.In the course of the present research, discussions and communications with the people in the related fields were very useful. Especially, we are very much indebted to the communications with the researchers at University of Tokyo, Hiroshima University, Yokohama National University, and Tokushima University. What we have obtained during this project have been publicized on the occasion of annual meeting of The Japan Physical Society, workshops and seminars at the domestic as well as foreign research Institutes. These results have been published in the journals listed above. Less
在本研究项目中,我们研究了通过数学和理论物理之间的相互作用而发展起来的可积系统。我们开始我们的研究,集中我们的注意力在超对称版本的可积系统的结构和微扰理论在超空间。在第一年,在可解模型方面,我们在超空间微扰理论的框架内研究了超对称sine-Gordon理论。基于N=2情况下获得的结果,我们与东京大学的研究人员合作,应用N=4手征超空间形式主义,研究了sine-Gorden理论到N=4情况的可能扩展。利用微扰理论研究了经典和量子两个层次的守恒律。进一步,我们研究了超对称quatum群的非交换微分, ...更多信息 是由超对称量子平面(空间)实现的。文献[1]对时空对称性的量子空间和量子形变作了评述。另一方面,在本研究计划的第二年和第三年(最后一年),我们在微扰QCD和重整化群方法的框架下,研究了核子自旋结构函数g_1和g_2中的高扭算符twist-3和twist-4。这是和广岛大学的人一起进行的。在过去的一年中,基于我们在前一年中所获得的,我们与阿贡国家实验室的C.K.Zachos博士合作研究了超对称sigma模型中的对偶性。在本研究过程中,与相关领域的人士进行了有益的讨论和交流。特别是,我们非常感谢与东京大学、广岛大学、横滨国立大学和德岛大学研究人员的交流。我们在本项目中获得的成果已在日本物理学会年会、国内外研究机构的讲习班和研讨会上公布。这些结果已发表在上述期刊上。少

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J.Kodaira, S.Matsuda, K.Sasaki and T.Uematsu: "More on the Burkhardt-Cottingham Sum Rule in QCD" Phys.Lett.B. 345. 527-531 (1995)
J.Kodaira、S.Matsuda、K.Sasaki 和 T.Uematsu:“更多关于 QCD 中的 Burkhardt-Cottingham Sum 规则” Phys.Lett.B。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J. Kodaira (小平治郎): "Spin structure function g_2(X,Q^2) and twist-3 operators in QCD" Physics Letters. B344. 348-354 (1995)
J. Kodaira (Jiro Kodaira):“QCD 中的自旋结构函数 g_2(X,Q^2) 和 twin-3 运算符”《物理快报》B348-354 (1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kawamura(川村浩之): "Target mass corrections ot QCD Bjorken sum rule for nucleon spin structure functions" Prog.Theor.Phys.Suppl.120. 225-230 (1995)
H.Kawamura(Hiroyuki Kawamura):“核子自旋结构函数的 QCD Bjorken 和规则的目标质量校正”Prog.Theor.Phys.Suppl.120(1995)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Curtright: "Geometry and duality in supersymmertric σ-models" Nuclear Physics. B469. 488-512 (1996)
T. Curtright:“超对称 σ 模型中的几何和对偶性”核物理,488-512。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kawamura(川村浩之): "Renormalization of twiet-4 operators in QCD Bjorken and Ellis-Jatte sum rules" Modern Physics Letters A. (掲載予定). (1997)
H.Kawamura(Hiroyuki Kawamura):“QCD Bjorken 和 Ellis-Jatte 和规则中 twiet-4 算子的重整化”《现代物理快报 A》(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UEMATSU Tsuneo其他文献

UEMATSU Tsuneo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('UEMATSU Tsuneo', 18)}}的其他基金

Physics in the Energy-Frontier and the Perturbative Methodof Quantum Chromodynamics
能量前沿物理学和量子色动力学的微扰方法
  • 批准号:
    22540276
  • 财政年份:
    2010
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Higher Order Effects in QCD and the New Development of Calculational Method
QCD的高阶效应及计算方法的新发展
  • 批准号:
    18540267
  • 财政年份:
    2006
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of Deep Inelastic Interaction in Gauge and String Theories
规范和弦理论中的深层非弹性相互作用的结构
  • 批准号:
    15540266
  • 财政年份:
    2003
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Perturbative QCD and New Development of Spin Physics
微扰QCD与自旋物理新进展
  • 批准号:
    12640266
  • 财政年份:
    2000
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extended Supersymmetry and Dynamics of Integrable System
扩展超对称性和可积系统动力学
  • 批准号:
    10209208
  • 财政年份:
    1998
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
High-energy QCD and Supersymmetric Integrable Models
高能 QCD 和超对称可积模型
  • 批准号:
    09640345
  • 财政年份:
    1997
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conformal Supergravity and String Model
共形超重力和弦模型
  • 批准号:
    63540216
  • 财政年份:
    1988
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Random-field effects in spin models: Supersymmetry, criticality, and universality
自旋模型中的随机场效应:超对称性、临界性和普遍性
  • 批准号:
    EP/X026116/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Research Grant
Supersymmetry in the geometry of particle systems
粒子系统几何中的超对称性
  • 批准号:
    23K12983
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Geometric structures and twisted supersymmetry
几何结构和扭曲超对称
  • 批准号:
    EP/X014959/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Research Grant
Aspects of curved-space supersymmetry and of supersymmetric black holes.
弯曲空间超对称性和超对称黑洞的方面。
  • 批准号:
    2885396
  • 财政年份:
    2022
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Studentship
Search for supersymmetry in events with missing ET and b-jets with ATLAS
使用 ATLAS 搜索缺少 ET 和 b 喷流的事件中的超对称性
  • 批准号:
    2665416
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Studentship
Mathematics and Supersymmetry
数学和超对称性
  • 批准号:
    563284-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    University Undergraduate Student Research Awards
Searching for Supersymmetry at ATLAS at the LHC
在 LHC 的 ATLAS 上寻找超对称性
  • 批准号:
    2606420
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Studentship
New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
  • 批准号:
    RGPIN-2017-06971
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
New Calabi-Yau Geometries in String Theory and Supersymmetry
弦理论和超对称中的新卡拉比-丘几何
  • 批准号:
    RGPIN-2017-06971
  • 财政年份:
    2020
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Discovery Grants Program - Individual
Phenomenology of Electroweak Symmetry Breaking, Supersymmetry, and the Frontiers of the Standard Model
电弱对称破缺、超对称性和标准模型前沿的现象学
  • 批准号:
    2013340
  • 财政年份:
    2020
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了