Extended Supersymmetry and Dynamics of Integrable System
扩展超对称性和可积系统动力学
基本信息
- 批准号:10209208
- 负责人:
- 金额:$ 5.82万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research on Priority Areas (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of the present research project is to clarify the non-perturbative properties of dynamics of the integrable systems in field theory as well as string theory which possess supersymmetry where N is greater than or equal to 2. We have investigated the following subjects throughout the period of the project. First of all, various aspects of the partially broken N = 2 supersymmetry with superconformal or AdS symmetry were clarified in the framework of nonlinear realization. In connection with the noncommutative geometry in string theories, the quantization based on Wigner functions supplemented by the star product was studied (Uematsu). A general and comprehensive formulation of representation theories of N = 4 superconformal algebras was developed and the various aspects including spectral flow were discussed. Concerning the possible extra spacetime dimensions, the physically observable effects in the case of timelike extra dimensions was investigated (Matsuda). Thirdly, the Ca … More logero-Moser systems, which possess integrable multi-particle dynamics at both quantum and classical levels were investaged and the general structure of their quantum integrability as well as their symmetry were revealed (Sasaki). In the context of the string theory and the M-theory, the three-string junction has been studied on how it is represented as a BPS state. The realization of the de Sitter domain wall in field theory was also investigated (Sasakura). There have been another study on the noncommutative geometry in the presence of the B field as well as on the boundary string field theory (BSFT) and its extensions. The relation to the g-function of the action was dicussed and the off-shell bound states were constructed (Itoyama). As an activity of the present research group, we organized a workshop on the gauge theory and integrable models. In the course of the present research, discussions and communications with the people in the related fields inside Japan as well as abroad were very useful and indispensable. Less
本研究项目的目的是阐明场论和弦论中具有超对称性的可积系统动力学的非微扰性质,其中N大于或等于2。我们在整个项目期间调查了以下主题。首先,在非线性实现的框架下,阐明了具有超共形或AdS对称性的部分破缺N = 2超对称性的各个方面。与弦论中的非对易几何有关,研究了以维格纳函数为基础并辅以星星积的量子化(植松)。给出了N = 4超共形代数的表示理论的一般性和全面性公式,并讨论了包括谱流在内的各个方面。关于可能的额外时空维度,研究了在类时额外维度情况下的物理可观察效应(Matsuda)。第三,Ca ...更多信息 logero-Moser系统,在量子和经典水平上都具有可积的多粒子动力学,揭示了它们的量子可积性和对称性的一般结构(Sasaki).在弦理论和M理论的背景下,三弦结被研究如何被表示为BPS态。在场论中实现德西特畴壁也进行了研究(佐佐仓)。在B场存在的情况下,对非对易几何以及边界弦场论(BSFT)及其扩展也有另一项研究。讨论了作用量与g函数的关系,构造了离壳束缚态(Itoyama)。作为本课题组的一项活动,我们组织了一次关于规范理论和可积模型的研讨会。在目前的研究过程中,与日本国内外相关领域的人士进行的讨论和交流是非常有用和必不可少的。少
项目成果
期刊论文数量(72)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.J.Bordner: "Calogero-Moser Models: A New Formulation" Prog.Theor.Phys.100. 1107-1129 (1998)
A.J.Bordner:“Calogero-Moser 模型:一种新的公式”Prog.Theor.Phys.100。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. J. Bordner, E. Corrigan and R. Sasaki: "Calogero-Moser Models I : A New Formulation"Prog. Theor. Phys.. 100. 1107-1129 (1998)
A. J. Bordner、E. Corrigan 和 R. Sasaki:“Calogero-Moser 模型 I:一种新配方”Prog。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Sasakura: "A de Sitter Thick Domain Wall Solution by Elliptic Functions"JHEP. 0202. 026 (2002)
N.Sasakura:“椭圆函数的德西特厚畴壁解决方案”JHEP。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. P. Khastgir, A. J. Pocklington and R. Sasaki: "Quantum Calogero-Moser Models : Integrability for all Root Systems"J. Phys.. A33. 9033-9064 (2000)
S. P. Khastgir、A. J. Pocklington 和 R. Sasaki:“量子 Calogero-Moser 模型:所有根系统的可集成性”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Kawamoto and N. Sasakura: "Open Membranes in a Constant C Field Background and Noncommutative Boundary"JHEP. 0007. 014 (2000)
S. Kawamoto 和 N. Sasakura:“恒定 C 场背景和非交换边界中的开放膜”JHEP。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UEMATSU Tsuneo其他文献
UEMATSU Tsuneo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UEMATSU Tsuneo', 18)}}的其他基金
Physics in the Energy-Frontier and the Perturbative Methodof Quantum Chromodynamics
能量前沿物理学和量子色动力学的微扰方法
- 批准号:
22540276 - 财政年份:2010
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Higher Order Effects in QCD and the New Development of Calculational Method
QCD的高阶效应及计算方法的新发展
- 批准号:
18540267 - 财政年份:2006
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure of Deep Inelastic Interaction in Gauge and String Theories
规范和弦理论中的深层非弹性相互作用的结构
- 批准号:
15540266 - 财政年份:2003
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Perturbative QCD and New Development of Spin Physics
微扰QCD与自旋物理新进展
- 批准号:
12640266 - 财政年份:2000
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
High-energy QCD and Supersymmetric Integrable Models
高能 QCD 和超对称可积模型
- 批准号:
09640345 - 财政年份:1997
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Supersymmetric Integrable Theory and String Moedl
超对称可积理论与弦模型
- 批准号:
06640392 - 财政年份:1994
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conformal Supergravity and String Model
共形超重力和弦模型
- 批准号:
63540216 - 财政年份:1988
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
- 批准号:
2350508 - 财政年份:2024
- 资助金额:
$ 5.82万 - 项目类别:
Standard Grant
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
$ 5.82万 - 项目类别:
Standard Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 5.82万 - 项目类别:
Continuing Grant
Type III Noncommutative Geometry and KK-theory
III 类非交换几何和 KK 理论
- 批准号:
RGPIN-2017-04718 - 财政年份:2022
- 资助金额:
$ 5.82万 - 项目类别:
Discovery Grants Program - Individual
Interactions between noncommutative geometry and quantum information
非交换几何与量子信息之间的相互作用
- 批准号:
RGPIN-2022-03373 - 财政年份:2022
- 资助金额:
$ 5.82万 - 项目类别:
Discovery Grants Program - Individual
Conference: Facets of Noncommutative Geometry
会议:非交换几何的方面
- 批准号:
2203450 - 财政年份:2022
- 资助金额:
$ 5.82万 - 项目类别:
Standard Grant
Random Noncommutative Geometry
随机非交换几何
- 批准号:
570071-2022 - 财政年份:2022
- 资助金额:
$ 5.82万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Noncommutative Geometry and Analysis on Homogeneous Spaces
非交换几何与齐次空间分析
- 批准号:
2054725 - 财政年份:2021
- 资助金额:
$ 5.82万 - 项目类别:
Standard Grant
Type III Noncommutative Geometry and KK-theory
III 类非交换几何和 KK 理论
- 批准号:
RGPIN-2017-04718 - 财政年份:2021
- 资助金额:
$ 5.82万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Geometry on fraclats and index theory
分形和指数理论中的非交换几何
- 批准号:
21K13795 - 财政年份:2021
- 资助金额:
$ 5.82万 - 项目类别:
Grant-in-Aid for Early-Career Scientists