Many-body Problems in Condensed Matter Physics
凝聚态物理中的多体问题
基本信息
- 批准号:07044066
- 负责人:
- 金额:$ 3.2万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for international Scientific Research
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The international collaboration on the spin gap phase of the plaquette RVB state has started during the period of this project and has been evolved into the study on the critical behavior of the quantum phase transition between the Neel ordered phase and the plaquette RVB phase. By employing the quantum loop algorithm Monte Carlo simulations it is shown that the critical exponents agree with the classical O (3) exponents, which supports the mapping to the nonlinear sigma model.Another important problem studied in this project is the metal-insulator transition in two-dimension. By using quantum Monte Carlo simulations and the scaling theory, it is concluded that the hyperscaling hypothesis is valid in this case and the dynamical exponent is z=4.Concerning the heavy Fermions, the one-dimensional Kondo lattice model was investigated by using the density matrix renormalization group. In the paramagnetic metallic phase, spin and charge Friedel oscillations were observed for the first time. From the period of oscillations it is concluded that the Fermi surface is large in the sense that the Fermi momentum is determined by the sum of densities of conduction electrons and the localized spins.For the ab-initio calculations of electronic states, the constant pressure molecular dynamics method was developed. This method enables us to determine the transition states of structural transformations in graphite, silicides, BC_2N and others.
在本项目期间,开始了对元胞RVB态自旋能隙相的国际合作,并已发展到对Neel有序相和元胞RVB相之间量子相变临界行为的研究。用量子环算法MonteCarlo模拟表明,临界指数与经典的O(3)指数一致,这支持了到非线性sigma模型的映射。本项目研究的另一个重要问题是二维金属-绝缘体相变。通过量子MonteCarlo模拟和标度理论,得到了超标度假设成立的结论,动力学指数为z= 4.对于重费米子,利用密度矩阵重整化群研究了一维Kondo晶格模型.在顺磁性金属相中,首次观察到自旋和电荷的Friedel振荡。从振荡周期可以看出,费米面很大,费米动量由传导电子密度和局域自旋决定.这种方法使我们能够确定石墨、硅化物、BC_2N等的结构转变的过渡态。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Tsunetsugu: "Rigorous Results for Half-Filled Kondo Lattices" Phys.Rev.B. 55. 3042-3045 (1997)
H.Tsunetsugu:“半填充近藤晶格的严格结果”Phys.Rev.B。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Shibata: "Neel Orders,Haldane Gap and Kondo Singlet Phase in the Anisotropic Kondo Chain" Physical Review B. 51. 3626-3631 (1995)
N.Shibata:“各向异性近藤链中的 Neel Orders、Haldane Gap 和 Kondo Singlet Phase”物理评论 B. 51. 3626-3631 (1995)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Troyer: "Nearly Critical Ground State of LaCuO_<2.5>" Phys.Rev.B (in press).
M.Troyer:“LaCuO_<2.5> 的近临界基态”Phys.Rev.B(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Tateyama: "Ab Initio Study on the Transformation Path under Pressure between Graphite and Diamond" (発表予定).
Y.Tateyama:“从头开始研究石墨和金刚石之间压力下的转变路径”(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Ueda: "Plaquette Resonating-Valence-Bond Ground State of CaV_4O_9" Phys.Rev.Lett.76. 1932-1935 (1996)
K.Ueda:“CaV_4O_9 的板共振价键基态”Phys.Rev.Lett.76。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UEDA Kazuo其他文献
UEDA Kazuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UEDA Kazuo', 18)}}的其他基金
Heavy electron states and superconductivity due to anharmonic phonons
非简谐声子引起的重电子态和超导
- 批准号:
20540347 - 财政年份:2008
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How the auditory system makes speech perception noise-tolerant?
听觉系统如何使语音感知能够耐受噪声?
- 批准号:
20330152 - 财政年份:2008
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effect of orbital degeneracy on the heavy electron systems
轨道简并对重电子系统的影响
- 批准号:
14540325 - 财政年份:2002
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Observation on survival of the elderly by the severity of impaired activity of daily life and causes of death
老年人日常生活活动能力受损严重程度及死亡原因的生存观察
- 批准号:
12672190 - 财政年份:2000
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Study on Quantum Phase Transitions by the Density Matrix Renormalization Group Method
密度矩阵重正化群法对量子相变的理论研究
- 批准号:
10640330 - 财政年份:1998
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transcription of Yiddish Dramas, which Kafka saw, into Roman Script with Glossary
将卡夫卡看到的意第绪语戏剧转录成带有术语表的罗马文字
- 批准号:
10610506 - 财政年份:1998
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Devil's Staircase in Semimetals
半金属的恶魔阶梯
- 批准号:
07804020 - 财政年份:1995
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
THE STUDY OF CLOTHING PRESSURES -with special reference to factors affecting the clothing pressures-
服装压力的研究 - 特别参考影响服装压力的因素 -
- 批准号:
05405007 - 财政年份:1993
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for General Scientific Research (A)
On the Effects of Cross Share Holdings Among Japanese Corporations
论日本企业交叉持股的影响
- 批准号:
02451079 - 财政年份:1990
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
- 批准号:
EP/Y036069/1 - 财政年份:2024
- 资助金额:
$ 3.2万 - 项目类别:
Research Grant
The Nuclear Many-Body Problem: Toward a Predictive Microscopic Theory
核多体问题:迈向预测微观理论
- 批准号:
2209376 - 财政年份:2022
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
Greens Functions and the Nuclear Many-Body Problem
格林函数和核多体问题
- 批准号:
2207756 - 财政年份:2022
- 资助金额:
$ 3.2万 - 项目类别:
Standard Grant
The many-body problem in the age of quantum machine learning
量子机器学习时代的多体问题
- 批准号:
2120501 - 财政年份:2021
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
Green's Functions and the Nuclear Many-Body Problem
格林函数和核多体问题
- 批准号:
1912643 - 财政年份:2019
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
Computational complexity of quantum many-body problem in terms of Tensor Network formalism
张量网络形式主义的量子多体问题的计算复杂性
- 批准号:
18K13475 - 财政年份:2018
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Use of quaternions for topological phases: many body problem and time reversal symmetry breaking
使用四元数进行拓扑相:许多体问题和时间反演对称性破缺
- 批准号:
16K13845 - 财政年份:2016
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Green's functions and the nuclear many-body problem
格林函数和核多体问题
- 批准号:
1613362 - 财政年份:2016
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
The Entanglement perspectives on the quantum many body problem
量子多体问题的纠缠视角
- 批准号:
1812047 - 财政年份:2016
- 资助金额:
$ 3.2万 - 项目类别:
Studentship
High perfoemance computing for quamtum many-body problem using accelerators
使用加速器的量子多体问题的高性能计算
- 批准号:
15K00178 - 财政年份:2015
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)