Devil's Staircase in Semimetals

半金属的恶魔阶梯

基本信息

  • 批准号:
    07804020
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

Among the magnetic materials known so far, CeSb has the most complex phase diagram as a function of temperature and magnetic field. The complex magnetic phase diagram is know as the devil's staircase. Generally, the series of CeX (X=P,As, Bi, Sb) have complex magnetic phase diagrams in different degree, which suggeststhat there is a common mechanism for the devil's staircase observed in CeX.A characteristic feature of CeX is smallness of carriers. The carriers of CeX consist of holes at the GAMMA point and electrons at the X points. Under this situation, a new type of scattering processes from holes to electrons and vice versa accompanied by spin exchange with f-spins. This process may be calledoff-diagonal exchange in contrast to the usual exchanges where the scattering are within a band. The momentum transfer associated with his off-diagonal exchange corresponds to the antiferromagnetic wave vector, favoring antiferromagnetic RKKY interaction among the f spins. On the other hand, the ordinary exchanges favor ferromagnetic coupling in the low carrier limit. In this project, we have shown that the frustration between the RKKY interactions originated from these two types of exchange mechanisms is the basic mechanism for the devil's staircase in CeX by using a simple one-dimensional model.Since the origin of the RKKY interaction can be traced back to the Friedel oscillations, we have proceeded to study the spin and charge Friedel oscillations in the Kondo lattice model. By using thedensity matrix renormalization group method, we have observed spin and charge Friedel oscillations. From the period it is concluded that the Fermi volume is large in the sense that the Fermi wavevector isdetermined by the sum of densities of conduction electrons and localized spins.
在迄今为止已知的磁性材料中,CeSb 具有最复杂的温度和磁场函数相图。复杂的磁相图被称为魔鬼的阶梯。一般来说,CeX系列(X=P,As,Bi,Sb)具有不同程度的复杂磁相图,这表明在CeX中观察到的魔鬼阶梯存在共同的机制。CeX的一个特征是载流子小。 CeX 的载流子由 GAMMA 点的空穴和 X 点的电子组成。在这种情况下,一种新型的从空穴到电子的散射过程,反之亦然,并伴随着与 f 自旋的自旋交换。与散射在频带内的通常交换相反,该过程可称为非对角交换。与非对角线交换相关的动量传递对应于反铁磁波矢量,有利于 f 自旋之间的反铁磁 RKKY 相互作用。另一方面,普通交换有利于低载流子极限下的铁磁耦合。在本项目中,我们通过简单的一维模型证明了源自这两类交换机制的RKKY相互作用之间的挫败是CeX中魔鬼阶梯的基本机制。由于RKKY相互作用的起源可以追溯到弗里德尔振荡,因此我们继续研究近藤晶格模型中的自旋和电荷弗里德尔振荡。利用密度矩阵重整化群方法,我们观察到了自旋和电荷弗里德尔振荡。从该周期可以得出结论,费米体积很大,因为费米波矢是由传导电子和局域自旋的密度之和决定的。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Shibata: "Spin and Charge Gaps in 1-D Kondo Lattice Model with Coulomb Interaction between Conduction Electrons" Phys.Rev.B. 53. R8828-R8831 (1996)
N.Shibata:“一维近藤晶格模型中的自旋和电荷间隙以及传导电子之间的库仑相互作用”Phys.Rev.B。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Ueda: "Kondo Lattice Model -A Perspective of Heavy Electron Phenomena-" Physica B. (in press).
K.Ueda:“Kondo Lattice Model -A Perspective of Heavy Electron Phenomena-”Physica B.(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Shibata: "Large Fermi Surface of the One-Dimensional Kondo Lattice Model Observed by Friedel Oscillations" Physica B. (in press).
N.Shibata:“通过弗里德尔振荡观察到的一维近藤晶格模型的大费米面”Physica B.(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Shibata: "One-Dimensional Kondo Lattice Model as a Tomonaga-Luttinger Liquid" submitted to Phys.Rev.B.
N.Shibata:“作为 Tomonaga-Luttinger 液体的一维近藤晶格模型”提交给 Phys.Rev.B。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Ueda: "Devil's Staircase in Kondo Semimetals." Physica B. 223 & 224. 426-428 (1996)
K.Ueda:“近藤半金属中的魔鬼阶梯。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

UEDA Kazuo其他文献

UEDA Kazuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('UEDA Kazuo', 18)}}的其他基金

CaV_4O_9
CaV_4O_9
  • 批准号:
    25400357
  • 财政年份:
    2013
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
How the auditory system makes speech perception noise-tolerant?
听觉系统如何使语音感知能够耐受噪声?
  • 批准号:
    20330152
  • 财政年份:
    2008
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Heavy electron states and superconductivity due to anharmonic phonons
非简谐声子引起的重电子态和超导
  • 批准号:
    20540347
  • 财政年份:
    2008
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effect of orbital degeneracy on the heavy electron systems
轨道简并对重电子系统的影响
  • 批准号:
    14540325
  • 财政年份:
    2002
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Observation on survival of the elderly by the severity of impaired activity of daily life and causes of death
老年人日常生活活动能力受损严重程度及死亡原因的生存观察
  • 批准号:
    12672190
  • 财政年份:
    2000
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical Study on Quantum Phase Transitions by the Density Matrix Renormalization Group Method
密度矩阵重正化群法对量子相变的理论研究
  • 批准号:
    10640330
  • 财政年份:
    1998
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Transcription of Yiddish Dramas, which Kafka saw, into Roman Script with Glossary
将卡夫卡看到的意第绪语戏剧转录成带有术语表的罗马文字
  • 批准号:
    10610506
  • 财政年份:
    1998
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Many-body Problems in Condensed Matter Physics
凝聚态物理中的多体问题
  • 批准号:
    07044066
  • 财政年份:
    1995
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
THE STUDY OF CLOTHING PRESSURES -with special reference to factors affecting the clothing pressures-
服装压力的研究 - 特别参考影响服装压力的因素 -
  • 批准号:
    05405007
  • 财政年份:
    1993
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (A)
On the Effects of Cross Share Holdings Among Japanese Corporations
论日本企业交叉持股的影响
  • 批准号:
    02451079
  • 财政年份:
    1990
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

CAREER: Emergent quantum phenomena in epitaxial thin films of topological Dirac semimetal and its heterostructures
职业:拓扑狄拉克半金属及其异质结构外延薄膜中的量子现象
  • 批准号:
    2339309
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
Study on magnetization reversal mechanism and application to magnetization switching in Weyl semimetal/ferromagnetic nanodevices
外尔半金属/铁磁纳米器件磁化反转机制及其在磁化翻转中的应用研究
  • 批准号:
    23K19109
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Verification of valence fluctuating Weyl semimetal and the emergent physical properties
价态涨落外尔半金属的验证及其出现的物理性质
  • 批准号:
    23K03327
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spintronic THz Wave Emitter: an approach from Topological Weyl Semimetal Heusler alloys
自旋电子太赫兹波发射器:拓扑外尔半金属赫斯勒合金的一种方法
  • 批准号:
    22K14586
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Magnon spin-orbit torques in two-dimensional van der Waals magnets based heterostructures
基于异质结构的二维范德华磁体中的磁振子自旋轨道扭矩
  • 批准号:
    22K14561
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantum properties of true topological semimetal of single-crystal RTeSb with precise symmetric decision and carrier control.
具有精确对称决策和载流子控制的单晶 RTeSb 真拓扑半金属的量子特性。
  • 批准号:
    22K03528
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Correlation-induced Topological Order and Superconductivity in Organic Nodal Line Semimetal
有机节线半金属中相关诱导的拓扑序和超导性
  • 批准号:
    22K03526
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthesis and physical property measurements on "uncompensated" thermoelectric semimetal
“无补偿”热电半金属的合成和物理性能测量
  • 批准号:
    21K13878
  • 财政年份:
    2021
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Growth of Heusler-type Weyl semimetal thin films on ferroelectric substrates and electric-field control of topological states
铁电衬底上Heusler型Weyl半金属薄膜的生长及拓扑态的电场控制
  • 批准号:
    20K21002
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Experimental study of topological phases in strongly correlated system
强相关系统拓扑相的实验研究
  • 批准号:
    20F20315
  • 财政年份:
    2020
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了