Differential Geometric Reserch on Manifolds

流形微分几何研究

基本信息

  • 批准号:
    07304006
  • 负责人:
  • 金额:
    $ 5.31万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

Kenmotsu has published a paper, in which he proved theorems for intersections of minimal submanifolds in manifolds with partially positive curvature. Kenmotsu is studying local behavior of the Kaehler angles of minimal surfaces with constant Gaussian curvature in two dimensional complex space forms : In order to classify such minimal surfaces, at first we obtained differential geometric characterization of the second fundamental forms of such minimal surfaces. By using it we obtained an overdetermined system for the Kaehler angle. This is reduced to a system of two ODE's. By the values of the Gaussian curvature of the surface and the curvature of ambiant space, these systems are different. We developed analysis to these systems extensively and proved that they have no non trivial common solution even locally. It implies local classification theorem of suchminimal surfaces.Fukaya has proved the Arnold conjecture in the general setting. This is really exciting.For reserch of submanifold geometry, R.Miyaoka has studied relations between minimal surfaces in complex projective spaces and the Toda equations extensively and published her results in the Crelle Journal. Yamada has contributed to construct the theory of constant mean curvature surfaces in the hyperbolic spaces.For the reserch of global Riemannan geometry, Suyama has given a new method to construct diffeotopy of standard spheres and applying it he proved a differentiable pinching theorem for 0.654 pinched compact riemannan manioflds. T.Sakai has written a textbook of global Riemannian geometry which was published by the American Math.Society.
Kenmotsu发表了一篇论文,其中他证明了具有部分正曲率的流形中极小子流形的交点定理。Kenmotsu研究了二维复空间形式中具有常高斯曲率的极小曲面的Kaehler角的局部性质:为了对这类极小曲面进行分类,首先得到了这类极小曲面的第二基本形式的微分几何特征。利用它得到了Kaehler角的超定系统。这被简化为两个ODE的系统。根据曲面的高斯曲率和周围空间的曲率的大小,这些系统是不同的。我们对这些系统进行了广泛的分析,证明了它们甚至在局部也没有非平凡的公共解。福谷在一般情况下证明了Arnold猜想。在子流形几何的研究方面,宫冈R.Miyaoka对复射影空间中极小曲面与户田方程之间的关系进行了广泛的研究,并在Crelle Journal上发表了她的结果。Yamada在双曲空间中建立了常中曲率曲面理论,Suyama在整体Riemannan几何的研究中,给出了一种构造标准球面拓扑的新方法,并应用该方法证明了0.654pinched紧致Riemannan流形的一个可微pinching定理. T.Sakai写了一本由美国数学学会出版的整体黎曼几何教科书。

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atsushi Kasue: "Convergence of Riemannian manifolds and Albanese tori" Osaka J.Math.32. 677-688 (1995)
Atsushi Kasue:“黎曼流形和阿尔巴内托里的收敛”Osaka J.Math.32。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K Kenmotsu and C.Xia: "Intersections of minimal submanifelds in Manifolds of Partially Pesilie Curvature" Kodai Math.J.,. 18. 242-249 (1995)
K Kenmotsu 和 C.Xia:“部分 Pesilie 曲率流形中最小子流形的交点”Kodai Math.J.,。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Reiko Miyaoka: "The family of isometric superconformal harmonic maps and the affine Toda equations" Journal fur die reine und angewante Mathematik. 48. 1-25 (1996)
Reiko Miyaoka:“等距超共形调和映射族和仿射户田方程”Journalfur die reine und angewante Mathematik。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Fukaya: "Morse homotopy and Chern-Simous Perturbation theory" Cominun. of Math. Phys.81. 37-90 (1996)
K. Fukaya:“莫尔斯同伦和 Chern-Simous 微扰理论” Cominun。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Umehara: "Surfaces of constant mean curnative c in H^3 (-c) with presribed hyp. homes map" Mathamatische Annalen. 304. 203-224 (1996)
M. Umehara:“H^3 (-c) 中恒定平均曲线 c 的表面与规定的 hyp.homes 地图”Mathamatische Annalen。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KENMOTSU Katsuei其他文献

KENMOTSU Katsuei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KENMOTSU Katsuei', 18)}}的其他基金

Generalization of Wente torus in complex spaces forms
复杂空间形式中温特环面的推广
  • 批准号:
    21540061
  • 财政年份:
    2009
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Wente Torus in complex space forms
复杂空间形式的温特环面
  • 批准号:
    18540061
  • 财政年份:
    2006
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on constant mean curvature surfaces
常平均曲率曲面的研究
  • 批准号:
    12440012
  • 财政年份:
    2000
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
  • 批准号:
    23H00083
  • 财政年份:
    2023
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Discrete differential geometry, Lie sphere geometry, discrete surfaces theory, surface representations
离散微分几何、李球几何、离散曲面理论、曲面表示
  • 批准号:
    22KF0255
  • 财政年份:
    2023
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
  • 批准号:
    2301994
  • 财政年份:
    2023
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Standard Grant
Wall-crossing: from classical algebraic geometry to differential geometry, mirror symmetry and derived algebraic Geometry
穿墙:从经典代数几何到微分几何、镜面对称和派生代数几何
  • 批准号:
    EP/X032779/1
  • 财政年份:
    2023
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Fellowship
Differential Geometry and Minimal Surfaces
微分几何和最小曲面
  • 批准号:
    2305255
  • 财政年份:
    2023
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Standard Grant
Algebraic and Differential Geometry
代数和微分几何
  • 批准号:
    2883146
  • 财政年份:
    2023
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Studentship
Seeking universal principle for nonequilibrium thermodynamics based on differential geometry
基于微分几何寻求非平衡热力学普遍原理
  • 批准号:
    22H01141
  • 财政年份:
    2022
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Principal bundles in noncommutative differential geometry
非交换微分几何中的主丛
  • 批准号:
    RGPIN-2017-04249
  • 财政年份:
    2022
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Discovery Grants Program - Individual
Differential Geometry and Geometric Analysis Conference
微分几何与几何分析会议
  • 批准号:
    2200723
  • 财政年份:
    2022
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Standard Grant
Robust and Reliable Mathematical Models for Biomolecular Data via Differential Geometry and Graph Theory
通过微分几何和图论建立稳健可靠的生物分子数据数学模型
  • 批准号:
    2151802
  • 财政年份:
    2022
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了