Comprehensive Study of Functional and Real Analysis
泛函分析和实分析的综合研究
基本信息
- 批准号:07304014
- 负责人:
- 金额:$ 13.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a comprehensive research project involving all active mathematicians in the fields of Functional and Real Analysis. The aim is to have a proper perspective of recent progress in these fields in Japan as well as in the world so that coordinated research activities are possible for the future. For this purpose we made five groups according to the subjects.Each group conducted standing seminars and a nationwide meeting each year. The Investigators met three times every year in order to maintain close correspondence between the groups, and organized a joint symposium each year.In view of this character of the research project it is difficult to summarize our results in a few words but the following could be said. Until recently both Functional Analysis and Real Analysis are so much specialized that many results are profound but interest only few specialists of particular fields. However, we are having now a new trend in which those profound results are applied to an unexpected problem to make a breakthrough of a field which is stagnated for a long time. Our research project has promoted this desirable tendency of researches.For example, some of the function spaces appearing in Real Analysis have been proved to play a essential role in the theory of partial differential equations, although they were introduced only by theoretical necessity in Real Analysis. Toeplitz operators, which were introduced as examples of operators not equivalent to multiplications, are recognized as the same as pseudodifferential operators, and have found applications to the representation theory of Lie groups. Many approaches have been made for non-linear problems. A new lights was shed on the classical WKB method of perturbation.
这是一个全面的研究项目,涉及所有活跃的数学家在功能和真实的分析领域。其目的是对日本和世界在这些领域的最新进展有一个正确的看法,以便将来有可能开展协调一致的研究活动。为此,我们按主题分成五个小组,每个小组每年举行一次常设研讨会和一次全国性会议。调查员每年举行三次会议,以保持各小组之间的密切联系,并每年组织一次联合研讨会。鉴于研究项目的这一特点,很难用几句话概括我们的结果,但可以说如下。直到最近,泛函分析和真实的分析都是如此专业化,以至于许多结果是深刻的,但只有少数特定领域的专家感兴趣。然而,我们现在有一个新的趋势,即这些深刻的结果被应用到一个意想不到的问题,使一个长期停滞不前的领域取得突破。我们的研究工作推动了这一研究的发展趋势,例如,在真实的分析中出现的一些函数空间,尽管只是在理论上的需要才被引入到真实的分析中,但它们已经被证明在偏微分方程理论中起着重要的作用。托普利茨算子,作为不等价于乘法的算子的例子被引入,被认为是与伪微分算子相同的,并且已经发现了李群表示论的应用。对于非线性问题已经有许多方法。本文对经典的WKB摄动法作了新的解释。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
小松彦三郎編: "第35回実函数論・函数解析学合同シンポジウム講演集録" 118 (1996)
小松彦三郎主编:《第35届实函数理论与泛函分析联合研讨会论文集》118(1996)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tajima,Shinichi: "Bloch function in an external electric field and Berry-Buslaev phase" New Trends in Microlocal Analysis,Springer. 143-156 (1996)
Tajima、Shinichi:“外部电场中的 Bloch 函数和 Berry-Buslaev 相”微局域分析新趋势,Springer。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Komatsu,Hirosaburo: "Solution of differential equations by means of Laplace hyper functions" Structure of Solutions of Differential Equations,World Scientific. 227-252 (1996)
小松,弘三郎:“通过拉普拉斯超函数求解微分方程”微分方程解的结构,世界科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nakazi,T & Yamada,M.: "(A_2)-conditions and Carleson inequalities" Pacific J.Math.173. 151-171 (1996)
纳卡兹,T
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fujii,Masatoshi-Kamei,Eizaburo: "Mean-thesretic approach to the grand Furuta,inequality" Proc.Amer.Math.Soc.124. 2751-2756 (1996)
Fujii,Masatoshi-Kamei,Eizaburo:“对伟大古田不平等的平均理论方法”Proc.Amer.Math.Soc.124。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOMATSU Hikosaburo其他文献
KOMATSU Hikosaburo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOMATSU Hikosaburo', 18)}}的其他基金
The Study of the History of mathematics as a Branch of Mathematics
数学作为数学分支的史研究
- 批准号:
23540124 - 财政年份:2011
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
History of Mathematics from the viewpoint of Mathematics
从数学的角度看数学史
- 批准号:
20540107 - 财政年份:2008
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of History of Mathematics, in particular, of Japanese Mathematics in early Edo Period and of Analysis in the Nineteenth Century
数学史研究,特别是江户时代初期的日本数学和19世纪的分析
- 批准号:
16540119 - 财政年份:2004
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional and Real Analysis for Partial Differential Equations
偏微分方程的泛函分析和实分析
- 批准号:
09440069 - 财政年份:1997
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Microlocal Analysis of Differential Equations
微分方程的微观局部分析
- 批准号:
03452007 - 财政年份:1991
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
A New Approach and Development to Singular Integrals in Noncommutative Harmonic Analysis - Fusion of Real Analysis and Representation Theory
非交换调和分析中奇异积分的新方法和发展——实分析与表示论的融合
- 批准号:
20K03638 - 财政年份:2020
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Real analysis via sparse domination
通过稀疏支配进行真实分析
- 批准号:
19K03538 - 财政年份:2019
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Summer Symposium in Real Analysis XLIII
实分析夏季研讨会XLIII
- 批准号:
1856209 - 财政年份:2019
- 资助金额:
$ 13.18万 - 项目类别:
Standard Grant
Developing and Validating Proof Comprehension Tests in Real Analysis
在实际分析中开发和验证证明理解测试
- 批准号:
1821553 - 财政年份:2018
- 资助金额:
$ 13.18万 - 项目类别:
Standard Grant
Summer Symposium in Real Analysis XLI
实分析夏季研讨会 XLI
- 批准号:
1700356 - 财政年份:2017
- 资助金额:
$ 13.18万 - 项目类别:
Standard Grant
Study of martingale spaces and martingale inequalities in view of real analysis
从实分析角度研究鞅空间和鞅不等式
- 批准号:
16K05203 - 财政年份:2016
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Harmonic Analysis by the methods of real analysis
通过实分析方法进行谐波分析
- 批准号:
16H03943 - 财政年份:2016
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Construction of multi-dimensional singular integral theory in non-commutative harmonic analysis - A new method combining real analysis and representation theory
非交换调和分析中多维奇异积分理论的构建——实分析与表示论相结合的新方法
- 批准号:
16K05211 - 财政年份:2016
- 资助金额:
$ 13.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Upgrading Learning for Teachers in Real Analysis
协作研究:在真实分析中提升教师的学习水平
- 批准号:
1524681 - 财政年份:2015
- 资助金额:
$ 13.18万 - 项目类别:
Standard Grant
Collaborative Research: Upgrading Learning for Teachers in Real Analysis
协作研究:在真实分析中提升教师的学习水平
- 批准号:
1524619 - 财政年份:2015
- 资助金额:
$ 13.18万 - 项目类别:
Standard Grant