Microlocal Analysis of Differential Equations
微分方程的微观局部分析
基本信息
- 批准号:03452007
- 负责人:
- 金额:$ 4.03万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (B)
- 财政年份:1991
- 资助国家:日本
- 起止时间:1991 至 1992
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are two ways of microlocal analysis, one by M. Sato et al. employs the theory of several complex variables and the cohomologies with coefficients in sheaves, and the other by L. Hormander et al. multiplication by cut-off functions and Fourier transforms. Komatsu established in between a third method of microlocal analysis employing Poisson integrals and their analytic continuations. This has the advantage of carrying out microlocalanalysis for various classes of generalized functions, including the Gevrey classes, between Sato's hyperfunctions and Schwartz' distributions at the same time.Komatsu extended, moreover, the theory of Laplace transforms of hyperfunctions to the case where hyperfunctions have values in a Banach space, and applied it in order to extend the Hille-Yosida theory of semigroups of linear operators to the case where semigroups are various classes of generalized functions.Kotani and Sunada investigated the spectra of Laplace operators and Schrodinger operators acting on the functions on Riemannian manifolds. In particular, Kotani gave a probabilistic proof to an estimate of the supremum of spectra in terms of curvatures. Sunada gave a sufficient condition for the spectrum has the band structure as a property of the C^*-group algebra of the discrete group acting on the manifold.Kataoka compared and distinguished many theories called the second microlocal analysis, and showed the importance of choozing a suitable theory in applying the second microlocal analysis to differential equations.Tsutsumi investigated the solvability of the initial value problem for the Zakharov equations describing the strong disturbance of Langmuin waves in plasmas.Kawahigashi gave rigorous formulations and their proofs to the so-called Ocneanu theory for the classification of subfactors in operator algebras for the first time. On this established foundation there will be fruitful applications of the theory.
微局部分析有两种方法,一种是M. Sato等人利用多复变理论和层中系数的上同调,L. Hormander等人,通过截止函数和傅立叶变换乘法。小松之间建立了第三种方法的microlocal分析采用泊松积分及其解析延拓。这具有的优点进行microlocalanalysis各类广义函数,包括Gevrey类,之间佐藤的hyperfunctions和Schwartz'distribution在同一时间。小松扩展,此外,理论的拉普拉斯变换的hyperfunctions的情况下,hyperfunctions有值的Banach空间,并将其应用于扩展希勒-Kotani和Sunada研究了拉普拉斯算子和Schrodinger算子的谱作用在黎曼流形上的函数上的算子。特别是,Kotani给出了一个概率证明的估计上确界的频谱曲率。作为离散群的C^*-群代数作用于流形的性质,Sunada给出了谱具有带结构的充分条件,Kataoka比较和区别了许多被称为第二微局部分析的理论,Tsutsumi研究了Zakharov的初值问题的可解性,并证明了在将第二微局部分析应用于微分方程时,建立适当的理论的重要性。Kawahigashi首次对算子代数中的子因子分类的Ocneanu理论给出了严格的公式和证明。在这一基础上,理论的应用将会取得丰硕的成果。
项目成果
期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Sunada: "Groups C^*-algebras and the spectrum of a periodic Schrodinger operator on a manifold" Canadian J. of Math.44. 180-193 (1992)
T.Sunada:“群 C^* 代数和流形上周期性薛定谔算子的谱” Canadian J. of Math.44。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Komatsu: "An elementary Hreory of hyperfunctions and microfunctions" Banacl Center Publications. 27. 233-256 (1992)
H.Komatsu:“超函数和微函数的基本原理”Banacl 中心出版物。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Sunada: "Group C^*-algebras and the spectrum of a periodic Schrodinger operator on a manifold" Conadian Journal of Mathematics. 44. 180-193 (1992)
T.Sunada:“C^* 群代数和流形上周期性薛定谔算子的谱”Conadian Journal of Mathematics。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小松 彦三郎: "Growth order of holomorphic solutions of partial defferential equations" Preprint.
小松彦三郎:“偏微分方程全纯解的增长阶”预印本。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Komatsu: "An elementary theory of hyperfunctions and microfunctions" Banach Center Publications. 27. 235-256 (1992)
H.Komatsu:“超函数和微函数的基本理论”巴纳赫中心出版物。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOMATSU Hikosaburo其他文献
KOMATSU Hikosaburo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOMATSU Hikosaburo', 18)}}的其他基金
The Study of the History of mathematics as a Branch of Mathematics
数学作为数学分支的史研究
- 批准号:
23540124 - 财政年份:2011
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
History of Mathematics from the viewpoint of Mathematics
从数学的角度看数学史
- 批准号:
20540107 - 财政年份:2008
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of History of Mathematics, in particular, of Japanese Mathematics in early Edo Period and of Analysis in the Nineteenth Century
数学史研究,特别是江户时代初期的日本数学和19世纪的分析
- 批准号:
16540119 - 财政年份:2004
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional and Real Analysis for Partial Differential Equations
偏微分方程的泛函分析和实分析
- 批准号:
09440069 - 财政年份:1997
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Comprehensive Study of Functional and Real Analysis
泛函分析和实分析的综合研究
- 批准号:
07304014 - 财政年份:1995
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Intersection Theory for Differential Equations
微分方程的交集理论
- 批准号:
2401570 - 财政年份:2024
- 资助金额:
$ 4.03万 - 项目类别:
Continuing Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
- 批准号:
2350129 - 财政年份:2024
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
- 批准号:
2342407 - 财政年份:2024
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
- 批准号:
2346780 - 财政年份:2024
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Quantum Algorithms for Nonlinear Differential Equations - QuANDiE
非线性微分方程的量子算法 - QuANDiE
- 批准号:
EP/Y004663/2 - 财政年份:2024
- 资助金额:
$ 4.03万 - 项目类别:
Research Grant
Geometric Techniques for Studying Singular Solutions to Hyperbolic Partial Differential Equations in Physics
研究物理学中双曲偏微分方程奇异解的几何技术
- 批准号:
2349575 - 财政年份:2024
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
- 批准号:
2349794 - 财政年份:2024
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
- 批准号:
2348846 - 财政年份:2024
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Comparative Study of Finite Element and Neural Network Discretizations for Partial Differential Equations
偏微分方程有限元与神经网络离散化的比较研究
- 批准号:
2424305 - 财政年份:2024
- 资助金额:
$ 4.03万 - 项目类别:
Continuing Grant