Co-operative Research on Numerical Solutions in Seience and Technology

科技数值解的合作研究

基本信息

  • 批准号:
    07304022
  • 负责人:
  • 金额:
    $ 4.74万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

1. When the problem is axisymmetric, we can transform original three-dimensional problems to two-dimensional ones by introducing cylidrincal coordinates. The amount of required computation is reduced drastically but a singularity appears on the axis of symmetry. We have introduced suitable finite element subdivisions and weighted function spaces adapted to the singularity and obtained convergence results and optimal error estimates for both mixed and stabilized finite element approximations to flow problems.2. We have developed a new method for getting much more precise force exerted from fluid to bodies in flows. Using a weak form we transform the surface integrals to body integrals for the computation of drag and lift forces. We have establish error analyzes and found more precise values of drag and lift coefficients of bodies of any shape.3. The vortex layr is one of main fundamental processes of the turbulence and it is important ot find out the mechanism. We have studied numerically the behavior of two-dimensional vortex leyers in shear flows. We have observed that the phenomena differ much depending on the signs of vortices of vortex layrs and shear layrs.4. Leak boundary conditions often appear in phenomena of engineering and environmental problems. We have formulated and analyzed the boundary condition. We have also developed a unmerical method.5. We have combined higher-order finite elements and a residual iteration method in order to estimate errors of numerical solutions of nonlinear elliptic problems in the maximum norm. We have improved drastically the verification accuracy of numerical solutions.6. We have proposed collocation type two-step Runge-Kutta methods. They preserve the orders and stability and are easily implemented on parallel computers. We have constructed higher-order two-step Runge-Kutta methods by a suitable setting of collocation points, implemented it in the prediction and correction type, and realized a high-performance computation.
1.当问题为轴对称时,通过引入圆柱坐标,可以将原来的三维问题转化为二维问题。所需的计算量大大减少,但奇异性出现在对称轴上。我们引入了适合于奇异性的有限元剖分和加权函数空间,得到了流动问题的混合有限元和稳定有限元的收敛结果和最优误差估计.我们发展了一种新的方法来获得更精确的力从流体施加到物体的流动。利用一个弱形式,我们将表面积分转化为体积分,用于计算阻力和升力。我们建立了误差分析,并找到了任何形状物体的阻力和升力系数的更精确的值.涡层是湍流的主要基本过程之一,对其机理的研究具有重要意义。本文用数值方法研究了剪切流中二维涡层的行为。我们观察到,不同的涡旋层和剪切层的涡旋符号,其现象有很大的不同.泄漏边界条件经常出现在工程和环境问题中。我们已经制定和分析的边界条件。我们还开发了一个unmerical方法。本文将高阶有限元和剩余迭代法相结合,给出了非线性椭圆问题数值解的最大模误差估计。我们大大提高了数值解的验证精度.我们提出了配置型两步Runge-Kutta方法。它们保持了顺序和稳定性,并且很容易在并行计算机上实现。通过适当设置配置点,构造了高阶两步Runge-Kutta方法,并将其实现为预测校正型,实现了高性能计算。

项目成果

期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Mimura: "Pattern dynamics in an exothermic reaction" Physica D. 84. 58-71 (1995)
M.Mimura:“放热反应中的模式动力学”Physica D. 84. 58-71 (1995)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
藤野清次: "反復法の数理" 朝倉書店, 140 (1996)
藤野精二:《迭代方法的数学》朝仓书店,140(1996)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Ishihara: "On the optimum SOR iterations for finite difference approximation to periodic boundary value problems" Mathematica Japonica. 41. 199-209 (1995)
K.Ishihara:“关于周期性边值问题的有限差分近似的最佳 SOR 迭代”Mathematica Japonica。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Fujita: "Analytical and numerical approaches to stationary flow problems with leak and slip boundary conditions" Lecture Notes in Numerical and Applied Analysis. 14. 17-31 (1995)
H. Fujita:“具有泄漏和滑移边界条件的稳态流动问题的分析和数值方法”《数值和应用分析》讲义。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.T.Nakao: "Numerical verification of solutions for nonlinear elliptic problems using L^∞ residual method" Journal of Mathematical Analysis and Applications. (印刷中). (1997)
M.T.Nakao:“使用 L^∞ 残差法对非线性椭圆问题的解进行数值验证”《数学分析与应用杂志》(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TABATA Masahisa其他文献

TABATA Masahisa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TABATA Masahisa', 18)}}的其他基金

Development and analysis of new numerical methods for two-fluid problems
二流体问题新数值方法的开发和分析
  • 批准号:
    22540143
  • 财政年份:
    2010
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development and analysis of high-quality numerical methods and simulation for flow problems
高质量数值方法的开发和分析以及流动问题的模拟
  • 批准号:
    16104001
  • 财政年份:
    2004
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Construction of Numerical Analysis for High-performance Large-Scale Computation
高性能大规模计算数值分析的构建
  • 批准号:
    13304007
  • 财政年份:
    2001
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Construction of a Practical Computation Code for Heat Convection Problems with Slow Flow
慢流热对流问题实用计算代码的构建
  • 批准号:
    11554003
  • 财政年份:
    1999
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New Numerical Methods for Flow Problems and their Numerical Simulation
流动问题的新数值方法及其数值模拟
  • 批准号:
    10304007
  • 财政年份:
    1998
  • 资助金额:
    $ 4.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了