Construction of a Practical Computation Code for Heat Convection Problems with Slow Flow
慢流热对流问题实用计算代码的构建
基本信息
- 批准号:11554003
- 负责人:
- 金额:$ 8.13万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) We have built a finite element scheme for solving numerically heat convection problems with slow flow like Earth's mantle convection in geophysics and melting glass convection in glass product furnaces. We have shown unconditional stability of the scheme and the convergence rate of the finite element solutions. These problems are modeled by Rayleigh-Benard equations with infinite Prandtl number, whose viscosity is strongly dependent on temperature. The obtained scheme is practically useful for three-dimensional problems. In order to reduce computation load we have employed the tetrahedral linear element for every unknown functions, velocity, pressure and temperature, and used stabilized finite element method.(2) We have constructed a computation code for the scheme mentioned above and implemented it on parallel computers. The Earth's mantle convection problem is solved in a spherically symmetric domain. By virtue of this property we have divided the domain into the union of congrue … More nt subdomains, which have allowed us to keep only stiffness matrices in a representative subdomain in solving Stokes equations by a preconditioned iterative method. As a result the required memory has reduced drastically. We could get speeding up of about 20 times in using 24 CPUs of Fujitsu GP7000, a shared memory type computer at Computing and Communications Center, Kyushu University. Using this code, we have studied the viscosity ratio dependency of stationary temperature fields and flow patterns. When the ratio increases, the heads of plumes flatten and the number of plumes increases.(3) We have presented a numerical verification method for solutions of the Navier-Stokes equations, and succeeded in the verification for low Reynolds number problems. Performing accuracy guaranteed computation, we have given a computer aided proof to the existence of bifurcation branches for two-dimensional heat convection problems.(4) Using a code for the convection in a three-dimensional sphere, we have studied the relation between the existence of continents and mantle convection. We have shown numerically that plumes arive under continents in some tens of billion years. Less
(1)本文建立了一个有限元格式,用于数值求解慢流热对流问题,如地球物理学中的地幔对流问题和玻璃制品窑炉中的熔融玻璃对流问题。我们证明了格式的无条件稳定性和有限元解的收敛速度。这些问题是由Rayleigh-Benard方程与无限普朗特数,其粘度是强烈依赖于温度。所得到的格式对三维问题是实用的。为了减少计算量,对速度、压力、温度等未知函数采用四面体线性单元,并采用稳定化有限元法。(2)我们已经为上述方案构造了一个计算程序,并在并行计算机上实现了它。在球对称区域内求解地幔对流问题。根据这个性质,我们将域划分为congrue的并集 ...更多信息 nt子域,这使得我们在用预条件迭代法求解Stokes方程时,只保留一个代表子域中的刚度矩阵。因此,所需的内存大幅减少。我们可以得到约20倍的速度在使用富士通GP 7000,在计算和通信中心,九州大学的共享内存型计算机的24个CPU。利用这个程序,我们研究了稳态温度场和流型的粘度比依赖性。当比值增加时,羽状流头部变平,羽状流数量增加。(3)提出了一种求解Navier-Stokes方程的数值验证方法,并成功地对低雷诺数问题进行了验证。通过保精度计算,给出了二维热对流问题分歧分支存在性的计算机辅助证明。(4)本文利用三维球内对流的数值模拟程序,研究了大陆的存在与地幔对流的关系。我们已经用数字表明,地幔柱在大陆下面存在了大约几百亿年。少
项目成果
期刊论文数量(55)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A. Suzuki, M. Tabata, and S. Honda: "Numerical solution of an unsteady Earth's mantle convection problem by a stabilized finite element method"Theoretical and Applied Mechanics. 48. 371-378 (1999)
A. Suzuki、M. Tabata 和 S. Honda:“通过稳定有限元方法数值求解非稳定地幔对流问题”理论与应用力学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Fukumoto,Y.: "Motion and expansion of a viscous vortex ring.Part1.A higher-order asymptotic formula for the velocity"Journal of Fluid Mechanics. (発表予定).
Fukumoto, Y.:“粘性涡环的运动和膨胀。第 1 部分。速度的高阶渐近公式”流体力学杂志(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Tabata and A.Suzuki: "A stabilized finite element method for the Rayleigh-Benard equations with infinite Prandtl number in a spherical shell"Computational Methods in Applied Mechanics and Engineering. 190. 387-402 (2000)
M.Tabata 和 A.Suzuki:“球壳中具有无限普朗特数的 Rayleigh-Benard 方程的稳定有限元方法”应用力学和工程中的计算方法。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Rozi and Y.Fukumoto: "The Most Unstable Perturbation of Wave-Packet Form inside Hill's Vortex"J.Phys.Soc.Japan. 69. 2700-2701 (2000)
T.Rozi 和 Y.Fukumoto:“希尔涡旋内波包形式最不稳定的扰动”J.Phys.Soc.Japan。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nakao, M.T.et al.: "Verified numerical computations for an inverse elliptic eigenvalue problem with finite data"Japan Journal of Industrial and Applied Mathematics. 18. 587-602 (2001)
Nakao, M.T.等人:“用有限数据验证逆椭圆特征值问题的数值计算”日本工业与应用数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TABATA Masahisa其他文献
TABATA Masahisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TABATA Masahisa', 18)}}的其他基金
Development and analysis of new numerical methods for two-fluid problems
二流体问题新数值方法的开发和分析
- 批准号:
22540143 - 财政年份:2010
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and analysis of high-quality numerical methods and simulation for flow problems
高质量数值方法的开发和分析以及流动问题的模拟
- 批准号:
16104001 - 财政年份:2004
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Construction of Numerical Analysis for High-performance Large-Scale Computation
高性能大规模计算数值分析的构建
- 批准号:
13304007 - 财政年份:2001
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New Numerical Methods for Flow Problems and their Numerical Simulation
流动问题的新数值方法及其数值模拟
- 批准号:
10304007 - 财政年份:1998
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Co-operative Research on Numerical Solutions in Seience and Technology
科技数值解的合作研究
- 批准号:
07304022 - 财政年份:1995
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Data driven approach integrating optics and machine learning to uncover parallel computation mechanism in brain circuits
集成光学和机器学习的数据驱动方法揭示大脑回路中的并行计算机制
- 批准号:
21H02801 - 财政年份:2021
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of stencil calculation and communication model to achieve high scalability on massively parallel computation
开发模板计算和通信模型,以实现大规模并行计算的高可扩展性
- 批准号:
18K11336 - 财政年份:2018
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multiphase parallel computation method to predict and understand disasters caused by gas-liquid-solid interactions
预测和理解气-液-固相互作用引起的灾害的多相并行计算方法
- 批准号:
18K11337 - 财政年份:2018
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a highly integrated circuit using DNA and a demonstration test of the parallel computation using a complementary DNA as an operator
使用DNA的高度集成电路的开发以及使用互补DNA作为算子的并行计算的演示测试
- 批准号:
17K06395 - 财政年份:2017
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Multi-Objective Optimization via Simulation: Theory, Methods, and Parallel Computation
职业:通过仿真进行多目标优化:理论、方法和并行计算
- 批准号:
1554144 - 财政年份:2016
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
ParCell: A Parallel Computation Framework for Scalable and Mechanistic Modeling and Simulation of Multicellular Systems
ParCell:用于多细胞系统可扩展和机械建模与仿真的并行计算框架
- 批准号:
1609642 - 财政年份:2016
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
SHF: Small: Empirical Autotuning of Parallel Computation for Scalable Hybrid Systems
SHF:小型:可扩展混合系统并行计算的经验自动调整
- 批准号:
1527706 - 财政年份:2015
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Stability Analysis of Large-Scale Nonlinear Systems using Parallel Computation
使用并行计算的大规模非线性系统的稳定性分析
- 批准号:
1538374 - 财政年份:2015
- 资助金额:
$ 8.13万 - 项目类别:
Standard Grant
Development of the method for multibody system analysis based on the canonical theory for constrained system applicable to the parallel computation and the state estimation
基于适用于并行计算和状态估计的约束系统规范理论的多体系统分析方法的发展
- 批准号:
15K17994 - 财政年份:2015
- 资助金额:
$ 8.13万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




