New Numerical Methods for Flow Problems and their Numerical Simulation
流动问题的新数值方法及其数值模拟
基本信息
- 批准号:10304007
- 负责人:
- 金额:$ 12.03万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A).
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) We have developed a numerical method for computing accurately drag and lift exerted by the fluid to a body immersed in the flow field. Transforming those values to equivalent integrals in the domain, we have succeeded in establishing error estimates. We have obtained accurate drag coefficients of a sphere by this method. The restults have been extended to evolutional problems and best possible error estimates have been obtained.(2) The system of Rayleigh-Benard equations with infinite Prandtl number is a mathematical model describing heat convection phenomena in slow flows such as the Earth's mantle convection.We have developed a finite element scheme for this system, established error estimates, made an effective parallel code for three-dimensional computation, and performed numerical simulation for the Earth's mantle convection.(3) We have developed mathematical theory and computation algorithms to find exact solutions of partial differential equations from numerical computation results. Those methods have been applied to the stationary Stokes equations, the Navier-Stokes equations, stationary bifurcation solution of heat convection problems.(4) We have applied Dirichlet-Neumann mapping to exterior problems and developed combined numerical methods with a charge simulation method for the harmonic equation and with a domain decomposition method for the Helmholtz equation.(5) We have constructed a mathematical model to analyze effect to ecological system caused by coastal oil pollution and performed the numerical simulation and the visualization. The obtained results are in good agreement with physical experimental results.(6) The interface of porous media flow takes various behavior depending on the initial state. Using finite difference method we have given a sufficient condition for the separation of the support of the solution and upper and lower estimates of the waiting time for the initial interface to keep invariant.
(1)本文发展了一种精确计算流体对浸没在流场中物体的阻力和升力的数值方法。将这些值转化为域中的等价积分,我们成功地建立了误差估计。我们用这种方法得到了球体的精确阻力系数。所得结果已推广到演化问题,并得到了最佳可能误差估计。(2)具有无穷Prandtl数的Rayleigh-Benard方程组是描述地幔对流等慢流热对流现象的数学模型,我们发展了该方程组的有限元格式,建立了误差估计,编制了有效的三维并行计算程序,并对地幔对流进行了数值模拟。(3)我们已经发展了数学理论和计算算法,从数值计算结果中找到偏微分方程的精确解。这些方法已应用于定常Stokes方程、Navier-Stokes方程、热对流问题的定常分歧解。(4)我们已经应用Dirichlet-Neumann映射到外部问题,并开发了相结合的数值方法与电荷模拟方法的谐波方程和区域分解方法的Helmholtz方程。(5)建立了海岸带石油污染对生态系统影响的数学模型,并进行了数值模拟和可视化。所得结果与物理实验结果吻合较好。(6)多孔介质渗流界面随初始状态的不同而呈现出不同的行为。利用有限差分方法,给出了解的支撑分离以及初始界面保持不变的等待时间的上下估计的充分条件。
项目成果
期刊论文数量(53)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Nakaki and K.Tomoeda: "Numerical waiting time of interfaces in one-dimensional porous medium equation"Mathematical Sciences and Applications. 14. 324-333 (2000)
T.Nakaki 和 K.Tomoeda:“一维多孔介质方程中界面的数值等待时间”数学科学与应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.S.Shanta,T.Takeuchi,H.Imai and M.Kushida: "Numerical computation of attractors in free boundary problems"Advances in Mathematical Sciences and Applications. (発表予定).
S.S.Shanta、T.Takeuchi、H.Imai 和 M.Kushida:“自由边界问题中吸引子的数值计算”数学科学与应用进展(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Liu,Xiao-Jin: "Higher order radiation boundary condition and finite element method for scattering problem" Advances in Mathematical Sciences and Applications. 8. 801-819 (1998)
刘晓金:“散射问题的高阶辐射边界条件和有限元方法”数学科学与应用进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Tabata and D. Tagami: "Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows"Japan Journal of Industrial and Applied Mathematics. 17. 371-389 (2000)
M. Tabata 和 D. Tagami:“非平稳纳维-斯托克斯流中阻力和升力的有限元近似的误差估计”日本工业与应用数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.-Tabata and D.-Tagami.: "A finite element analysis of a linearized problem of the {Navier〓{Stokes} equations with surface tension"SIAM Journal on Numerical Analysis. 38. 40-57 (2000)
M.-Tabata 和 D.-Tagami.:“具有表面张力的 {Navier〓{Stokes} 方程的线性化问题的有限元分析”SIAM 数值分析杂志 38. 40-57 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TABATA Masahisa其他文献
TABATA Masahisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TABATA Masahisa', 18)}}的其他基金
Development and analysis of new numerical methods for two-fluid problems
二流体问题新数值方法的开发和分析
- 批准号:
22540143 - 财政年份:2010
- 资助金额:
$ 12.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and analysis of high-quality numerical methods and simulation for flow problems
高质量数值方法的开发和分析以及流动问题的模拟
- 批准号:
16104001 - 财政年份:2004
- 资助金额:
$ 12.03万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Construction of Numerical Analysis for High-performance Large-Scale Computation
高性能大规模计算数值分析的构建
- 批准号:
13304007 - 财政年份:2001
- 资助金额:
$ 12.03万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Construction of a Practical Computation Code for Heat Convection Problems with Slow Flow
慢流热对流问题实用计算代码的构建
- 批准号:
11554003 - 财政年份:1999
- 资助金额:
$ 12.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Co-operative Research on Numerical Solutions in Seience and Technology
科技数值解的合作研究
- 批准号:
07304022 - 财政年份:1995
- 资助金额:
$ 12.03万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
Efficient Conservative High-Order Solution-Flux Domain Decomposition Methods and Local Refinements for Flows in Porous Media and Electromagnetics
多孔介质和电磁学中流动的高效保守高阶解-通量域分解方法和局部细化
- 批准号:
RGPIN-2022-04571 - 财政年份:2022
- 资助金额:
$ 12.03万 - 项目类别:
Discovery Grants Program - Individual
Domain decomposition methods based on proper generalized decomposition for parametric heterogeneous problems
基于适当广义分解的参数异构问题域分解方法
- 批准号:
EP/V027603/1 - 财政年份:2022
- 资助金额:
$ 12.03万 - 项目类别:
Research Grant
US Participation at the Twenty-sixth International Domain Decomposition Conference
美国参加第二十六届国际域名分解会议
- 批准号:
2216799 - 财政年份:2022
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Domain Decomposition Methods for Coupled Models of Non-Newtonian Fluids and Solid Structures
非牛顿流体与固体结构耦合模型的域分解方法
- 批准号:
2207971 - 财政年份:2022
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Collaborative: Novel Fast Microlocal, Domain-Decomposition Algorithms for High-Frequency Elastic Wave Modeling and Inversion in Variable Media
协作:用于可变介质中高频弹性波建模和反演的新型快速微局部域分解算法
- 批准号:
2012046 - 财政年份:2020
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Linear Equations Solver for Domain Decomposition Based Parallel Finite Element Methods with Inconsistent Mesh
具有不一致网格的基于域分解的并行有限元方法的线性方程求解器
- 批准号:
20K19813 - 财政年份:2020
- 资助金额:
$ 12.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Novel Microlocal-Analysis and Domain-Decomposition Based Fast Algorithms for Elastic Wave Modeling and Inversion in Variable Media
合作研究:基于新型微局域分析和域分解的快速算法,用于可变介质中的弹性波建模和反演
- 批准号:
2011843 - 财政年份:2020
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant
Advanced Prediction Method of Indoor Natural Ventilation Flow using LES-based Domain Decomposition Technique
基于LES的域分解技术的室内自然通风流量高级预测方法
- 批准号:
20H02311 - 财政年份:2020
- 资助金额:
$ 12.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Domain decomposition methods for electronic structure calculations
电子结构计算的域分解方法
- 批准号:
411724963 - 财政年份:2019
- 资助金额:
$ 12.03万 - 项目类别:
Research Grants
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
- 批准号:
1913004 - 财政年份:2019
- 资助金额:
$ 12.03万 - 项目类别:
Standard Grant














{{item.name}}会员




