幾何学的複素解析とポテンシャル論
几何复形分析和势论
基本信息
- 批准号:07304062
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Co-operative Research (A)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
本研究では複素解析とポテンシャル論における種々の幾何学的様相を解析学的見地からとらえることを試みたものである.まず,リーマン面のモジュライの理論を中心とした話題について多くの知見を得ることが出来た.井関は共形的に平坦な多様体および多様体上の平坦な共形構造のなす空間について研究し,Riemann面のTeichmuller空間の理論を高次元の拡張について考察した.中西は尖点付き曲面のタイヒミュラー空間の実代数的表現を与える大域座標系を研究し、写像類群や数論に応用した.奥村による関連研究もある.松崎はクライン群論の立場からリーマン面上の射影構造を研究し,developing mapが被覆写像になる場合の構造を研究した.これには,須川,志賀-谷川,谷川らの関連研究があり新しい知見も得られている.ポテンシャル論では鈴木が熱方程式の解の境界挙動を調べ,調和関数のlocal Hopf lemmaに対応する結果を証明した.中井はp-Dirichlet調和測度に関する大津賀の問題を肯定的に解決した.また,擬等角写像の立場から志賀は擬等角変形によるポテンシャル論的概念との不変性について研究した.複素多様体の分野では特異点の分類理論に関連して,石井は例外集合のHodge structureによる特異点の考察、変形理論と不変量の関係などを研究した.
This study is based on the analysis of complex elements and the theory of geometry. The topic of the discussion is: A study of conformal planar multibodies and conformal planar structures on multibodies is carried out. The theory of Riemann surfaces and Teichmuller spaces is investigated. The representation of algebra in space and the study of coordinate systems in large fields are discussed. Okumura The study of projective structures on the surface of Matsuzaki's group theory, the study of structures in the case of developing maps covering images. A Study on the Relationship between Sugawa, Shiga-Tanigawa and Tanigawa. This paper proves the results of the local Hopf lemma of the solution of the Suzuki equation. Nakai p-Dirichlet harmonic measure related to the Otsuka problem is definitely solved The concept and the invariance of the theory of pseudo-equiangular writing are studied in this paper. A study on the relationship between the Hodge structure and the non-variable quantity in the classification theory of complex multi-variable.
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
石井志保子: "The canonical modifications by weighted blow-ups" J. of Alg. Geom. (to appear).
Shihoko Ishii:“加权爆炸的规范修改”J. of Alg。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
志賀啓成: "Quasiconformal mappings nad potentials" Proceedings of Rolf Nevanlinna Colloquium 95.(to appear). (1996)
Keisei Shiga:“拟共形映射与势”,Rolf Nevanlinna Colloquium 95 论文集(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
松崎克彦: "Projective structures inducing covering maps," Duke Math. J.78. 413-425 (1995)
Katsuhiko Matsuzaki:“投影结构诱导覆盖图”,Duke Math J.78(1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
志賀 啓成其他文献
Complex Analysis and its applications
复分析及其应用
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一;西尾 昌治;佐官 謙一;小森 洋平;河内 明夫;今吉 洋一;志賀 啓成;足利 正;今吉 洋一 - 通讯作者:
今吉 洋一
Enumerating prime Iinks and closed orientable 3-manifolds by characteristic rational invariants
通过特征有理不变量枚举素链接和闭可定向 3 流形
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一;西尾 昌治;佐官 謙一;小森 洋平;河内 明夫 - 通讯作者:
河内 明夫
関数体上のモーデル予想をめぐって
关于函数域的模型猜想
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎 - 通讯作者:
野口 潤次郎
Boundary properties of quasiconformal harmonic mappings
拟共形调和映射的边界性质
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
M.Nishio;M.Yamada;Y.Imayoshi;J.Noguchi;H.Shiga;A.Kodama;S.Kato;M.Nishio;M.Nishio;児玉 秋雄;西尾 昌治;志賀 啓成;野口 潤次郎;河内 明夫;松本 幸夫;足利 正;今吉 洋一;野口 潤次郎;西尾 昌治;金信 泰造;児玉 秋雄;小森 洋平;加藤 信;佐官 謙一 - 通讯作者:
佐官 謙一
A complete classification of bifurcation diagrams for a class of (p,q)-Laplace equation
一类(p,q)-拉普拉斯方程的分岔图的完整分类
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Gallagher;I.;Higaki;M.;and Maekawa;Y.;志賀 啓成;石井仁司;Kenta Ozeki;Yoshitaka Watanabe;石渡哲哉;梶木屋 龍治 - 通讯作者:
梶木屋 龍治
志賀 啓成的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('志賀 啓成', 18)}}的其他基金
擬等角解析および粗幾何による正則力学系とそのモジュライ空間の研究
使用准共形分析和粗几何研究全纯动力系统及其模空间
- 批准号:
22K03344 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Teichm u ller空間とModular群の研究
Teichmiller空间和模群的研究
- 批准号:
01740084 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
タイヒミュラー空間の境界理論とその応用に関する研究
Teichmuller空间边界理论及其应用研究
- 批准号:
60740078 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
タイヒミュラー空間の境界の構造とモジュラー変換に関する研究
Teichmuller空间的边界结构及模变换研究
- 批准号:
59740066 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
整p進ホッジ理論と関連するモジュライ空間の研究
p进Hodge理论相关模空间的研究
- 批准号:
24K16887 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
接続のモジュライ理論を用いたパンルヴェ方程式の理論の拡張
使用连接模理论扩展 Painlevé 方程理论
- 批准号:
24K06674 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
正則アノマリー方程式とモジュライ空間の幾何学
正则异常方程与模空间几何
- 批准号:
24K06743 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
表現のモジュライとその周辺(5)
表达模数及其周围环境(5)
- 批准号:
24K06686 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
周期から得られるモジュライ空間の力学系に関する研究
周期模空间动力系统研究
- 批准号:
24K06751 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
非アルキメデス的手法による超ケーラー多様体の数論とモジュライ
使用非阿基米德方法的超凯勒流形的数论和模
- 批准号:
23K20786 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
基本群のモジュライ空間の位相構造について
基本群模空间的拓扑结构
- 批准号:
24K16896 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
混標数モジュライ空間上の久賀・佐武構成とその応用
混合特征模空间的Kuga-Satake构造及其应用
- 批准号:
22KJ1780 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
- 批准号:
23K03138 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists