Applications of differential games to trade theory

微分博弈在贸易理论中的应用

基本信息

  • 批准号:
    07630014
  • 负责人:
  • 金额:
    $ 0.45万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1997
  • 项目状态:
    已结题

项目摘要

Let us atate the main theorem that was proved in the present project Consider a differential game as follows :(1) The numbers of playrs, state variables and control variables of each playr, say M,N and J_i, i=1, ..., M,are arbitrarily fixed.(2) Let x and c_i are an N-dimensional vector of state variables and an J_<ii>-dimensional vector of control variables of playr i. Let us assume that the motion of x is determined by the system of differential equationsx^^・=F (x, c),where c= (c_1, ...c_M). Let us denote the objective functional of playr i byV_i=*u_i (c_i) exp [-rt] dtwhere the rate of time preference r is assumed to be positive and constant.In this differential game, we can state that :Assume that u_<ii> is homogeneous of degree alpha>0, that F is homogeneous of degree one in x and c, and that all playr i's opponents use Markov strategies that are homogeneous of degree one. Then(ii) Playr i's best reply is homogeneous of degree one in x.(ii) The maximized value function V_i is homogeneous of degree alpha in x.The proof can be found in Long and Shimomura (Journal of Economic Behavior and Organization, December 1997).
本文证明了一个微分对策的主要定理:(1)局中人的数目,每个局中人的状态变量和控制变量,设M,N和J_i,i=1,…,M是任意固定的。(2)设x和c_i分别是参与者i的状态变量的N维向量和<ii>控制变量的J维向量。让我们假设x的运动由微分方程组x ^^·=F(x,c)决定,其中c=(c_1,.. c_M)。设局中人i的目标泛函为V_i=*u_i(c_i)exp [-rt] dt,其中时间偏好率r为正且常数,在此微分对策中,设u_<ii>i为α&gt;0次齐次,F在x和c上均为1次齐次,且所有局中人i的对手均采用1次齐次马尔可夫策略。则(ii)Playr i的最佳对策是x中的一次齐次对策. (ii)最大值函数V_i在x中是α次齐次的。证明可以在Long和Shimomura(Journal of Economic Behavior and Organization,1997年12月)中找到。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shimomura, K.and Tran-Nam, B..: "Education, Human Capital and Economic Growth in an Overlapping Generations Model" Kokumin Keizai Zasshi. 175. 63-79 (1997)
Shimomura, K. 和 Tran-Nam, B..:“代际重叠模型中的教育、人力资本和经济增长”Kokumin Keizai Zasshi。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
下村和雄: "“Some Results on the Markov equilibria of a Class of Homogeneous Differential Games"" Journal of Economic Behavior and Organization. 34. (1997)
Kazuo Shimomura:“一类同质微分博弈的马尔可夫均衡的一些结果”,经济行为与组织杂志 34。(1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Shimomura: "A Dynamic Equilibrium Model of Durable-Goods Mopnopoly" Journal of Economic Behavior and Organization. 34. (1997)
K.Shimomura:“耐用品垄断垄断的动态均衡模型”经济行为与组织杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
下村和雄: "“A Dynamic Equilibrium Model of Durable-Goodx Mopnopoly"" Journal of Economic Behavior and Organization. 34. (1997)
Kazuo Shimomura:“Durable-Goodx Mopnopoly 的动态均衡模型”,经济行为与组织杂志 34。(1997 年)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
下村和雄: "“Education, Human Capital and Economic Growth in an Overlapping Generations Model"" 国民経済雑誌. 175. 63-79 (1997)
下村一夫:“代际重叠模型中的教育、人力资本和经济增长””国民经济杂志 175. 63-79 (1997)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIMOMURA Kazuo其他文献

SHIMOMURA Kazuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIMOMURA Kazuo', 18)}}的其他基金

Theoretical and empirical research on fluctuations in the value of US dollars and financial situation in financial and capital markets in the Pacific basin
美元币值波动与太平洋地区金融资本市场金融状况的理论与实证研究
  • 批准号:
    63410014
  • 财政年份:
    1988
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (A)

相似海外基金

Optimal control theory solves spin glass models with transverse field
最优控制理论求解横向场自旋玻璃模型
  • 批准号:
    19K23418
  • 财政年份:
    2019
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
On Automatic berthing/docking by combining optimal control theory and artificial intelligence technology
最优控制理论与人工智能技术相结合的自动靠泊/对接研究
  • 批准号:
    19K04858
  • 财政年份:
    2019
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Toward understanding of regulatory mechanism of body growth and metabolism based on optimal control theory
基于最优控制理论理解机体生长代谢调控机制
  • 批准号:
    17K19433
  • 财政年份:
    2017
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Dynamical Sparse Modeling by Optimal Control Theory and Statistical Learning(Fostering Joint International Research)
基于最优控制理论和统计学习的动态稀疏建模(促进国际联合研究)
  • 批准号:
    16KK0134
  • 财政年份:
    2017
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Guidance and control law for recovering aircraft fromstall condition using stochastic optimal control theory
基于随机最优控制理论的飞机失速恢复制导与控制律
  • 批准号:
    16H04588
  • 财政年份:
    2016
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bilevel Optimal Control: Theory, Algorithms, and Applications
双层最优控制:理论、算法和应用
  • 批准号:
    313963978
  • 财政年份:
    2016
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Priority Programmes
Construction of nonlinear stochastic optimal control theory for attenuating system noises
衰减系统噪声的非线性随机最优控制理论的构建
  • 批准号:
    25820184
  • 财政年份:
    2013
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Nonlinear stochastic optimal control theory and algorithms for an autonomous dirigible mission on Saturn`s moon, titan
土星卫星泰坦自主飞船任务的非线性随机最优控制理论和算法
  • 批准号:
    374341-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Construction of nonlinear optimal control theory based on fusion of quantization methods for HJB equations and stochastic processes
基于HJB方程和随机过程量化方法融合的非线性最优控制理论构建
  • 批准号:
    22760320
  • 财政年份:
    2010
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The Infection Control based on the Stochastic Optimal Control Theory and Its Application
基于随机最优控制理论的感染控制及其应用
  • 批准号:
    22560448
  • 财政年份:
    2010
  • 资助金额:
    $ 0.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了