Cross-Subject Study of Geometry
几何的跨学科研究
基本信息
- 批准号:07640108
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this project is to study problems in geometry in which several different areas are involved. As a first example, we investigated the possibility of establishing the so far unknown "geometry" which unifies Nevanlinna theory and Diophantine approximations. The main difficulty is the lack of the notion of differentiation of rational points of arithmetically defined projective varieties. We obtained functional equations among Weil functions of jets of holomorphic curves which is expected to serve as "defining equations" of differentials of rational points in Spec Z direction.Secondly we investigated problems concerning the existence of Ricci-flat Kahler structures on the tangent bundle of compact symmetric spaces. For instance, to show the existence of a Ricci-flat Kahler structure on tangent bundles of compact symmetric spaces of rank at least 2, we must show a priori estimates for solutions of certain Monge-Ampere eqations under appropriate boundary conditions. We overcome this analytic problem by introducing weighted isoperimetric inequality. An interesting question in rank 1 case is to characterize such spaces. The Blaschke conjecture asks to recover the symmetry hidden behind the periodic behavior of geodesics. We showed the existence of a unique complete non-compact Ricci-flat Kahler structure on the complexified Blaschke manifold. By using this, we showed that symmetry (which is shown to exist) at infinity propagates to symmetry of the original Blaschke manifold.
这个项目的目的是研究涉及几个不同领域的几何问题。作为第一个例子,我们研究了建立迄今未知的“几何”,统一Nevanlinna理论和丢番图近似的可能性。主要的困难是缺乏算术定义的射影簇的有理点的微分的概念。得到了全纯曲线喷流的Weil函数之间的函数方程,该方程有望作为Spec Z方向上有理点微分的“定义方程”。其次,研究了紧致对称空间切丛上Ricci平坦Kahler结构的存在性问题。例如,为了证明秩至少为2的紧致对称空间的切丛上的Ricci平坦Kahler结构的存在性,我们必须在适当的边界条件下证明某些Monge-Ampere方程的解的先验估计。我们通过引入加权等周不等式克服了这个解析问题。在秩为1的情况下,一个有趣的问题是刻画这样的空间。Blaschke猜想要求恢复隐藏在测地线周期行为背后的对称性。证明了复化Blaschke流形上存在唯一的完全非紧Ricci平坦Kahler结构。利用这一点,我们证明了在无穷远处的对称性(已证明存在)传播到原Blaschke流形的对称性。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ryoichi Kobayashi: "Restructuring value distribution thebry" Gesmetrin Complex Analysis " (World Scientific). 337-354 (1995)
小林良一:“重构价值分布理论”Gesmetrin Complex Analysis”(世界科学)。337-354(1995)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ryoichi Kobayashi: "Valve distribution of holomorphic wrves in projetive algebraio vauri and gelmetru diophantine problems" Compbx gwmetry and sim grlarities. (Interssat press). (1997)
Ryoichi Kobayashi:“射影代数 vauri 和 gelmetru 丢番图问题中全纯函数的阀分布”Compbx gwmetry 和 sim grlarities。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ryoichi Kobayashi: "Holomorphic curves in Abelian varieties - the second main theorem" Nagoya Math.J.(発表予定).
Ryoichi Kobayashi:“阿贝尔簇中的全纯曲线 - 第二个主要定理”Nagoya Math.J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ryoichi Kobayashi: "Restructuring value distribution theory" “Geometric Complex Analysis" (World Scientific). 337-354 (1995)
Ryoichi Kobayashi:“重构价值分布理论”“几何复数分析”(世界科学)337-354(1995)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
小林亮一: "Nevanlinna理論と数論" 数学(岩波書店). 48-2. 113-127 (1996)
小林良一:“Nevanlinna 理论和数论”(岩波书店)48-27(1996)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOBAYASHI Ryoichi其他文献
KOBAYASHI Ryoichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOBAYASHI Ryoichi', 18)}}的其他基金
Localization of Ricci form and the existence of an anti-canonical divisor on asymptotically Chow stable Fano manifolds
Ricci形式的局域化和渐进Chow稳定Fano流形上反正则除数的存在性
- 批准号:
23654025 - 财政年份:2011
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Statistical Laws in Geometry
几何统计定律
- 批准号:
17204005 - 财政年份:2005
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward discretization of Nevanlinna theory
Nevanlinna 理论的离散化
- 批准号:
13304003 - 财政年份:2001
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Radon transformation in Nevanlinina theory and Diophantire approximation
Nevanlinina 理论中的氡变换和丢番图近似
- 批准号:
09304007 - 财政年份:1997
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (A).
Value Distribution Theeory and Algebraic Geometry
值分布理论与代数几何
- 批准号:
08304007 - 财政年份:1996
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)