Toward discretization of Nevanlinna theory

Nevanlinna 理论的离散化

基本信息

  • 批准号:
    13304003
  • 负责人:
  • 金额:
    $ 28.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2004
  • 项目状态:
    已结题

项目摘要

Nevanlinna theory is a mathematics which is based on classicical calculus. However, this theory has aspects of those Mathematics such as statistical mechanics or arithmetic geometry and this makes the application of classical Differential geometry a difficult issue. More precisely, one can apply differential geometry only after one is successful in putting our problem in a good form by making best use of its statistical or arithmetic nature. Why does Nevablinna theory have such a nature? This question motivated my research project. I aimed at constructing background geometry explaining the origin of such nature of Nevanlinna theory. The guiding principle of my study came from statistical mechanics and arithmetic geometry (Arakelov geometry). Vojta proposed the so called Vojta's dictionary between Nevanlinna theory and Diophantine approximation. The set of rational points of projective varieties defined over a number field is considered to be the Diophantine analogue of transcendental h … More olomorphic curves into the complex variety consisting of its complex points. In my project I asked the question "What is the Diophantine analogue of differentiation of holomorphic curves?" My answer to this queestio is to interpret the lemma on logarithmic derivative in Nevanlinna theory as a defining equation of the derivative of a holomorphic curve. The corresponding statement in Diophantine setting becomes the defining equation of derivatives of rational points. The Diophantine Analogue of "differentiation" thus defined is not an absolute concept. This is defined becomes meaningful only after the target of approximation is given. In Nevanlinna theory, the absolute differentiation obays the relative law, which is the consequence of Lemma on logarithmic derivative. In Diophantine setting we should take finite places into account. I proposed a definition of ramification counting function in Diophantine approximation by extending the Minkovski/Bombierri-Vaaler geometry of numbers. I then proposed a Schmidt Subspace Theorem with truncated counting function. This version of SST enables us to establish some conjectures which is equivalent to the "abc conjecture" which seems to be quite different from the original conjecture. The definition of derivatives contain the rule of counting roots of equations. In the case of transcendental holomorphic curve or the set of rational points, the rule of counting should be based on some non-trivial statistics. In fact the truncated counting function for holomorphic curves in Abelian varieties should be of level 1 regardless of the target's dimension. Such kinds of question arises if we import the Diophantine definition of derivatives in the opposite way to Nevanlinna theory. We started this direction at the end of this project. Less
内瓦林纳理论是一门建立在古典微积分基础上的数学。然而,这一理论具有统计力学或算术几何等数学方面的特点,这使得经典微分几何的应用成为一个困难的问题。更准确地说,只有当一个人通过最大限度地利用它的统计或算术性质,成功地将我们的问题放在一个好的形式之后,才能应用微分几何。为什么纳瓦布林纳理论具有这样的性质?这个问题激励了我的研究项目。我的目的是构建背景几何学,解释内瓦林纳理论的这种性质的起源。我研究的指导原则来自统计力学和算术几何(阿拉克洛夫几何)。伏伊达在纳瓦林纳理论和丢番图近似之间提出了所谓的伏伊塔词典。定义在数域上的射影簇的有理点集被认为是超越h-…的丢番图模拟更多的全纯曲线转化为由其复数点组成的复数簇。在我的项目中,我问了这样一个问题:“全纯曲线的微分的丢番图类比是什么?”我对这个问题的回答是,将Nevanlinna理论中关于对数导数的引理解释为全纯曲线导数的定义方程。丢番图集上的相应语句成为有理点的导数的定义方程。这样定义的“区分”的丢番图类比并不是一个绝对的概念。这一定义只有在给定近似目标之后才有意义。在Nevanlinna理论中,绝对微分得到相对定律,这是对数导数引理的结果。在丢番图设置中,我们应该考虑有限的位置。通过推广数的Minkovski/Bombierri-Vaaler几何,我提出了丢番图近似下的分支计数函数的定义。然后,我提出了一个带截断计数函数的Schmidt子空间定理。这一版本的SST使我们能够建立一些与“ABC猜想”等价的猜想,而ABC猜想似乎与原始猜想有很大的不同。导数的定义包含了计算方程根数的规则。在超越全纯曲线或有理点集的情况下,计数规则应基于一些非平凡的统计量。实际上,阿贝尔变种的全纯曲线的截断计数函数应该是1级的,而与目标的维度无关。如果我们以与纳瓦林纳理论相反的方式引入丢番图对导数的定义,就会出现这样的问题。我们在这个项目结束时就开始了这个方向。较少

项目成果

期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An attempt toward rDiophantine analogue of ramification counting in Nevanlinna theory : Truncated counting function in Schmidt's Subspace Theorem
Nevanlinna 理论中分支计数的 rDiophantine 类似物的尝试:施密特子空间定理中的截断计数函数
Ryoichi Kobayashi: "Toward Nevanlinna theory as a geometric model for Diophantine approximation"Sugaku Exp.(Amer.Math.Soc.). (発売予定). 1-43 (2003)
Ryoichi Kobayashi:“将 Nevanlinna 理论作为丢番图近似的几何模型”Sugaku Exp.(Amer.Math.Soc.)(待发布)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
対数微分の補題から見たNevanlinna理論,
从对数导数引理来看 Nevanlinna 理论,
An attempt toward Diophantine analogue of ramification counting in Nevanlinna theory ・Truncated counting function in Schmidt Subspace Theorem
Nevanlinna 理论中分支计数的丢番图模拟的尝试 ・施密特子空间定理中的截断计数函数
Toward Nevanlinna teory as a geometric model for Diophantine Approximation
将 Nevanlinna 理论作为丢番图近似的几何模型
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Saito;Y.Takeuchi;Ryoichi Kobayashi
  • 通讯作者:
    Ryoichi Kobayashi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOBAYASHI Ryoichi其他文献

KOBAYASHI Ryoichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOBAYASHI Ryoichi', 18)}}的其他基金

Localization of Ricci form and the existence of an anti-canonical divisor on asymptotically Chow stable Fano manifolds
Ricci形式的局域化和渐进Chow稳定Fano流形上反正则除数的存在性
  • 批准号:
    23654025
  • 财政年份:
    2011
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Statistical Laws in Geometry
几何统计定律
  • 批准号:
    17204005
  • 财政年份:
    2005
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Radon transformation in Nevanlinina theory and Diophantire approximation
Nevanlinina 理论中的氡变换和丢番图近似
  • 批准号:
    09304007
  • 财政年份:
    1997
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Value Distribution Theeory and Algebraic Geometry
值分布理论与代数几何
  • 批准号:
    08304007
  • 财政年份:
    1996
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cross-Subject Study of Geometry
几何的跨学科研究
  • 批准号:
    07640108
  • 财政年份:
    1995
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Diophantine Approximation to Closed Subschemes and Integral Points on Varieties
闭子方案和品种积分点的丢番图逼近
  • 批准号:
    2302298
  • 财政年份:
    2023
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
Diophantine approximation, related problems, and applications to the existence or non-existence of arithmetic progressions
丢番图近似、相关问题以及算术级数存在或不存在的应用
  • 批准号:
    22KJ0375
  • 财政年份:
    2023
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
  • 批准号:
    RGPIN-2019-05618
  • 财政年份:
    2022
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic and Uniform Diophantine Approximation Via Flows on Homogeneous Spaces
通过齐次空间上的流进行渐近一致丢番图逼近
  • 批准号:
    2155111
  • 财政年份:
    2022
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
Dynamical Methods in Counting Questions and Diophantine Approximation
计数问题的动力学方法和丢番图近似
  • 批准号:
    2247713
  • 财政年份:
    2022
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
Diophantine approximation with restricted fractions
具有受限分数的丢番图近似
  • 批准号:
    573252-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 28.37万
  • 项目类别:
    University Undergraduate Student Research Awards
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
  • 批准号:
    RGPIN-2019-05618
  • 财政年份:
    2021
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamical Methods in Counting Questions and Diophantine Approximation
计数问题的动力学方法和丢番图近似
  • 批准号:
    2055364
  • 财政年份:
    2021
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Standard Grant
Effective Equidistribution in Diophantine Approximation : Theory, Interactions and Applications.
丢番图近似中的有效均匀分布:理论、相互作用和应用。
  • 批准号:
    EP/T021225/1
  • 财政年份:
    2020
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Research Grant
Diophantine approximation and transcendental number theory
丢番图近似和超越数论
  • 批准号:
    RGPIN-2019-05618
  • 财政年份:
    2020
  • 资助金额:
    $ 28.37万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了