Value Distribution Theeory and Algebraic Geometry

值分布理论与代数几何

基本信息

  • 批准号:
    08304007
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1996
  • 资助国家:
    日本
  • 起止时间:
    1996 至 无数据
  • 项目状态:
    已结题

项目摘要

The ultimate purpose of this project is to establish the geometry which fully explain the similarity between value distribution theory of holomorphic curves in projective algebraic varieties and the diophantine approximations on arithmetically defined projective varicties. The major difficulty in this research is the lack of definition of the notion of differentiation (in the direction of Spec Z of rational points of arithmetic varieties. Through the investigation under this project, we arrived at the fundamental idea which may be described as follows. Instead of trying to define the notion of differentiation of rational points in the direction of Spec Z itself, we try to find a system of functional equations among value-distrivution-theoretic functions (e.g., Weil functions). Then, using Vojta's dictionary, we translate the functional equations to equations in diophantine approximations. These equations will "define" the diffrentials of rational points. In the course of justifying this idea, we obtained the following results : (1) We invented the Radon transform transforming a holomorphic curve in higher dimensional varieties into a system of meromnorphic functions. (2) We can include the group structure of Abelian varieties into the framework of Radon transform, if we replace "rational functions" by holomorphic maps into hyperbolic Riemann surfaces. As a result, we can show that the second main conjecture holds for holomorphic curves in Abelian varieties. (3) We showed that the asymptotic behavior of the Weil functions of jets of a given holomorphic curve is the same for all jets, if a curve under consideration is not contained in a special proper algebraic subset, which is the obstruction to the second main conjecture. This is considered to be system of functional equations we are looking for.
本项目的最终目的是建立一个几何学,充分解释射影代数簇中全纯曲线的值分布理论与算术定义的射影簇上的丢番图逼近之间的相似性。在这项研究中的主要困难是缺乏定义的概念分化(在规范Z方向的合理点的算术品种。通过本项目的调查研究,我们得出了如下基本思想。我们不是试图在Spec Z本身的方向上定义有理点的微分的概念,而是试图在值分布理论函数中找到一个函数方程组(例如,Weil函数)。然后,使用Vojta的字典,我们翻译的功能方程方程的丢番图近似。这些方程将“定义”有理点的微分。在证明这一思想的过程中,我们得到了如下结果:(1)我们发明了Radon变换,将高维簇中的全纯曲线变换为亚纯函数系。(2)在双曲Riemann曲面中,用全纯映射代替有理函数,可以将Abel簇的群结构纳入Radon变换的框架中。结果表明,第二个主要猜想对阿贝尔簇中的全纯曲线成立。(3)我们证明了,如果一条全纯曲线不包含在一个特殊的真代数子集中,那么对于所有的喷流,它的Weil函数的渐近行为是相同的,这是第二个主要猜想的障碍。这被认为是我们要寻找的函数方程组。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ryoichi Kobayashi: "Valye distribution theory of holomorplric curves in projective algeleraic varietas and geomotric diophantine problems" "Complex Geometry and Singularities"(Internat.press). (1997)
Ryoichi Kobayashi:“射影代数变体和几何丢番图问题中全息曲线的 Valye 分布理论”“复杂几何和奇点”(Internat.press)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ryoichi Kobayashi: "Holomorphiccurves in Abelian varietis-the second main theorem" Nagoya Math. J.(発売予定).
Ryoichi Kobayashi:“阿贝尔变体中的全纯曲线 - 第二主定理”Nagoya Math J.(待发布)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ryoichi Kobayashi: "Nevalina Theory and Number Theory(in Japan)" Sugaku. 48-2. 113-127 (1996)
小林良一:“Nevalina 理论和数论(日本)”Sugaku。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hassan Azad and Ryoichi Kobayashi: "Ricci-flat kahler metrics on symmetric varieties" Comm.Geometry and Analysis. (to appear).
Hassan Azad 和 Ryoichi Kobayashi:“对称簇上的 Ricci-flat kahler 度量”Comm.Geometry and Analysis。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Ryoichi Kobayashi: "Ricei-flat Kahler metriss on symmetric varieties" Comm.geometry and analysis. (発表予定).
Ryoichi Kobayashi:“Ricei-flat Kahler metriss on 对称品种”Comm.geometry 和分析(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOBAYASHI Ryoichi其他文献

KOBAYASHI Ryoichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOBAYASHI Ryoichi', 18)}}的其他基金

Localization of Ricci form and the existence of an anti-canonical divisor on asymptotically Chow stable Fano manifolds
Ricci形式的局域化和渐进Chow稳定Fano流形上反正则除数的存在性
  • 批准号:
    23654025
  • 财政年份:
    2011
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Statistical Laws in Geometry
几何统计定律
  • 批准号:
    17204005
  • 财政年份:
    2005
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Toward discretization of Nevanlinna theory
Nevanlinna 理论的离散化
  • 批准号:
    13304003
  • 财政年份:
    2001
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Radon transformation in Nevanlinina theory and Diophantire approximation
Nevanlinina 理论中的氡变换和丢番图近似
  • 批准号:
    09304007
  • 财政年份:
    1997
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A).
Cross-Subject Study of Geometry
几何的跨学科研究
  • 批准号:
    07640108
  • 财政年份:
    1995
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Value-distribution theory of zeta and multiple zeta functions
zeta 和多重 zeta 函数的值分布理论
  • 批准号:
    22K03267
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments of higher dimensional value distribution theory and the fundamentals of complex analysis in several variables
高维值分布理论的新进展和多变量复杂分析的基础
  • 批准号:
    19K03511
  • 财政年份:
    2019
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diophantine Approximation and Value Distribution Theory at the interface of Arithmetic and Complex Hyperbolic Geometry: A Research Workshop with Minicourse
算术与复杂双曲几何界面的丢番图近似和值分布理论:迷你课程研究研讨会
  • 批准号:
    1904332
  • 财政年份:
    2019
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Value distribution theory
价值分配理论
  • 批准号:
    18K03319
  • 财政年份:
    2018
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of value distribution theory of Gauss maps of immersed surfaces in space forms and their applications to global property of surfaces
空间形式浸入曲面高斯图值分布理论的发展及其在曲面全局性质中的应用
  • 批准号:
    15K04840
  • 财政年份:
    2015
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric value distribution theory
几何价值分布理论
  • 批准号:
    26610011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Value distribution theory of meromorphic functions based on diffusion processes
基于扩散过程的亚纯函数值分布理论
  • 批准号:
    24540192
  • 财政年份:
    2012
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Value distribution theory of bounded domains
有界域的值分布理论
  • 批准号:
    23654021
  • 财政年份:
    2011
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Value distribution theory of analytic maps, Diophantine approximation and intersections of analytic cycles
解析图的值分布理论、丢番图近似和解析循环的交集
  • 批准号:
    23340029
  • 财政年份:
    2011
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Value distribution theory of meromorphic maps, especially on unicity problems and deficiencies on linear systems
亚纯映射的值分布理论,特别是线性系统的单一性问题和缺陷
  • 批准号:
    21540205
  • 财政年份:
    2009
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了