II型因子環の有限直和からなる増大列の分類及び生成される因子環の組の指数の決定
II型因子环有限直和组成的递增序列的分类及生成因子环集索引的确定
基本信息
- 批准号:07740098
- 负责人:
- 金额:$ 0.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
私の既に示した、有限II型因子環の有限直和の増大列から生成される因子環の指数を求める公式において、重要な仮定として、「トレース行列や指数行列が周期的である」という仮定が設定されている。私はこの周期性を満たす増大列を、可換図式から構成することを考えた。まず、有限因子環の有限直和4つからなる可換図式を考え、この図式から基本構成法を用いて有限フォンノイマン環の増大列を構成する。この増大列が周期性を満たす時に元の可換図式が周期的であると定め、この周期的な可換図式に対し、その性質や分類について研究した。周期的な可換図式の例としては、有限II型因子環とその上に作用する有限可換群から構成される図式が挙げられる。可換図式が周期的であるための必要十分条件は、図式の中の包含関係を表す行列が単位行列のスカラー倍となること、また周期的な可換図式は対称性を持つこと、などの結果を得た.分類に関しては、有限II型因子環の直和と3つの有限II型因子環からなる図式についてのみ考えた。このような図式に対しては、各包含関係の指数とトレースを表すベクトルにより完全に記述されること、特に指数が4未満の場合は周期的な可換図式が4通りしかないことを証明した。さらに指数が2の場合には、図式の中の1番小さな因子環とその上に作用する位数2の群から構成される図式と共役であることを示した。
The formula for calculating the exponent of a factor ring is set in the middle of the equation, the important equation is set in the middle of the equation, and the constant equation is set in the middle of the equation. The periodic structure of the system increases the number of columns, and the commutative structure increases the number of columns. The finite element method is used to construct the finite element method. A study on the periodic properties of the commutative forms of the periodic series Examples of periodic commutative expressions include finite commutative groups formed by finite type II factor rings and their upper actions. The necessary conditions for the period of the commutative expression are the inclusion relations in the expression, the columns and rows of the unit position, the times and the periods of the commutative expression, the symmetry and the results. The classification is related to the direct sum of finite type II factor rings and finite type II factor rings This paper proves that the expression of the index of each inclusion relation can be completely described in the case of the index of 4. In the case of exponent 2, the number of digits in the middle of the equation is 1, the number of digits in the upper part of the equation is 2, and the number of digits in the upper part of the equation is 2.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Sakuramoto: "Factors generated by direct sums of II_1 factors" Journal Math Soc Japan. (発表予定).
A.Sakuramoto:“由 II_1 因子直接求和生成的因子”Journal Math Soc Japan(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
櫻本 篤司其他文献
櫻本 篤司的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('櫻本 篤司', 18)}}的其他基金
周期的可換図式の分類及びflat connectionの計算
周期交换图的分类及平面连接的计算
- 批准号:
09740097 - 财政年份:1997
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
作用素環の指数理論
算子代数索引论
- 批准号:
08740095 - 财政年份:1996
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
- 批准号:
23K12970 - 财政年份:2023
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
K-theory of Operator Algebras and Index Theory on Spaces of Singularities
算子代数的K理论与奇点空间索引论
- 批准号:
2247322 - 财政年份:2023
- 资助金额:
$ 0.7万 - 项目类别:
Continuing Grant
Getzler rescaling in index theory
指数理论中的盖茨勒缩放
- 批准号:
572728-2022 - 财政年份:2022
- 资助金额:
$ 0.7万 - 项目类别:
University Undergraduate Student Research Awards
Index Theory, Stability of Orbits and Heteroclinic Phenomenon
指数理论、轨道稳定性和异宿现象
- 批准号:
RGPIN-2019-06847 - 财政年份:2022
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Grants Program - Individual
Noncommutative Geometry on fraclats and index theory
分形和指数理论中的非交换几何
- 批准号:
21K13795 - 财政年份:2021
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Index Theory, Stability of Orbits and Heteroclinic Phenomenon
指数理论、轨道稳定性和异宿现象
- 批准号:
RGPIN-2019-06847 - 财政年份:2021
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Grants Program - Individual
Index Theory, Stability of Orbits and Heteroclinic Phenomenon
指数理论、轨道稳定性和异宿现象
- 批准号:
RGPIN-2019-06847 - 财政年份:2020
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Grants Program - Individual
Index Theory, Stability of Orbits and Heteroclinic Phenomenon
指数理论、轨道稳定性和异宿现象
- 批准号:
RGPIN-2019-06847 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Grants Program - Individual
Applications of index theory to geometry and physics
指数理论在几何和物理学中的应用
- 批准号:
19K14544 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




