分子動力学法によるナノ切削機構の原子論的アプローチに関する研究

利用分子动力学方法研究纳米切削机理的原子方法

基本信息

  • 批准号:
    07750125
  • 负责人:
  • 金额:
    $ 0.7万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 无数据
  • 项目状态:
    已结题

项目摘要

銅単結晶およびシリコン単結晶の超精密切削実験を行い、透過型電子顕微鏡によって加工変質層を結晶学的に解析した。また、分子動力学法によるナノ切削シミュレーターを開発し、原子レベルでの材料の変形挙動を動的に観察した。切削実験および計算機シミュレーションから得られた知見に基づいて、ナノ切削機構を考察した。得られた結果をまとめると次のとおりである。(1)銅単結晶のナノ切削機構(1)すべり面をすべり方向に切削した場合の変形は,主に切削面と平行なすべり面の活動によって起こる.このため,切削面表層では積層不整が起こるが,結晶の回転はほとんど起こらない.(2)上記(1)以外の結晶方位に切削した場合には,切削面表層で結晶の回転が起こる.さらに,結晶の回転は細長い結晶粒を単位として起こり,(110)面を[110]方向に切削した場合のように,切削方向とすべり方向が同じときには結晶粒の長手方向と切削方向とは一致する.(3)切削面の変形機構は結晶方位によって大きく異なるが,切込み量が微小な超精密切削においては,このような変形は表面あらさなどの切削面性状の違いとしては現れない.(4)加工変質層は結晶方位によらず、表層の微細多結晶層と切削面に平行なトルセル組織の層状構造からなる。(5)切削初期段階の変形挙動に関してシミュレーション結果と実験結果に整合性が認められた。これにより、微小領域での材料の変形挙動の動的観察が可能となった。(2)シリコン単結晶のナノ切削機構(1)加工変質層は表層のアモルファス層と内部の転位層からなる。また、流れ型の切りくずが得られる場合には、その構造は完全なアモルファス相となっている。(2)内部に導入される転位は、被削材の結晶方位および工具形状に依存する。(3)微小領域での脆性-延性遷移はすべり変形の起こり易さに大きく依存する。(4)上記(3)の結果に基づき、すべり変形の起こり易さを数値化するためのSlip modelを提案し、結晶方位に依存する脆性-延性遷移点の違いを予測可能とした。(5)銅単結晶の計算機シミュレーションとシリコンの切削実験の間の相関を見いだし、すべり変形の動的観察の結果に基づき、工具形状(すくい角)に依存する脆性-延性遷移点の違いを明らかにした。
Ultra-precision machining of copper crystals and ultra-precision machining of copper crystals by transmission electron microscopy Molecular dynamics method is used to investigate the deformation and motion of materials. The cutting mechanism was investigated by computer system. The result is that you have to be careful. (1)Copper crystal cutting mechanism (1) cutting direction of the main cutting surface parallel to the main cutting surface of the active surface. At this moment, the surface layer of the cutting surface is uneven, and the crystal pattern is uneven. (2)Note (1) above: In case of cutting other than crystal orientation, the surface layer of cutting surface is crystallized. In addition, the crystal grain length of the crystal grain is the same as the cutting direction of the crystal grain in the direction of [110]. (3)The cutting surface shape mechanism is different from the crystal orientation, the cutting amount is small, the ultra-precision cutting is different, the cutting surface shape is different from the cutting surface behavior. (4)The processed texture layer is different from the crystal orientation, and the fine polycrystalline layer in the surface layer is different from the layered structure in the parallel structure of the cutting surface. (5)The initial stage of the cutting process is related to the integration of the results and the results. The observation of the shape and movement of materials in small fields is possible. (2)A cutting mechanism (1) for machining a material layer, a surface layer, and an inner layer. The structure of the structure is completely different from that of the structure. (2)The internal orientation depends on the crystal orientation of the material being cut and the shape of the tool. (3)The brittle and ductile migration in the micro domain is dependent on the shape of the transition. (4)The results of the above note (3) indicate that the prediction of the brittle and ductile transition point is possible due to the dependence of the crystal orientation on the basic structure, the shape and the numerical value of the Slip model. (5)The correlation between the cutting behavior of copper crystals and the shape of the tool depends on the brittle and ductile migration point.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

柴田 隆行其他文献

Development of microdevice for functional analysis of cellular network
蜂窝网络功能分析微型装置的开发
細胞培養機能を統合したデジタル電気穿孔デバイスの開発
集成细胞培养功能的数字电穿孔装置的研制
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    柴田 健生;本田 陸;岡本 俊哉;永井 萌土;柴田 隆行
  • 通讯作者:
    柴田 隆行
光吸収体の配置による範囲制御型オプトポレーション法の開発
使用光吸收器放置的范围控制光穿孔方法的开发
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Muhammad Azim Bin Mohamad Arshad;岡本 俊哉;柴田 隆行;永井 萌土
  • 通讯作者:
    永井 萌土
細胞多様性に対応した細胞保持力強化オプトポレーション法の開発
开发光操作方法以增强细胞保留以响应细胞多样性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    山本 寛文;松村 優基;Mishra Aniket;手島 美帆;岡本 俊哉;柴田 隆行;永井 萌土
  • 通讯作者:
    永井 萌土
大面積細胞パターニングのための空圧マイクロコンタクトプリント技術の開発
开发用于大面积单元图案化的气动微接触印刷技术
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    岩崎 真己;峰村 俊輝;永井 萌土;柴田 隆行
  • 通讯作者:
    柴田 隆行

柴田 隆行的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('柴田 隆行', 18)}}的其他基金

Sample-to-Answerを実現する多検体・多項目遺伝子検査システムの開発
开发多样本、多项目基因检测系统,实现样本到答案
  • 批准号:
    24K00776
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ナノニードルアレイを用いたマスクレス微細金属パターン創成技術の開発
开发利用纳米针阵列的无掩模精细金属图案创建技术
  • 批准号:
    21656038
  • 财政年份:
    2009
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
MEMS技術を用いたオンチップ細胞ネットワーク機能解析デバイスの開発
利用MEMS技术开发片上细胞网络功能分析装置
  • 批准号:
    19650115
  • 财政年份:
    2007
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
次世代ナノ加工・計測システムのためのダイヤモンドプローブの開発
开发用于下一代纳米加工和测量系统的金刚石探针
  • 批准号:
    17656046
  • 财政年份:
    2005
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
ダイヤモンド製マイクロチップによるDNA解析の高能率化の実現
使用金刚石微芯片实现 DNA 分析的高效率
  • 批准号:
    13750662
  • 财政年份:
    2001
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
PZT薄膜を搭載した圧電検出・駆動型ダイヤモンドAFMプローブの開発
开发配备PZT薄膜的压电检测/驱动型金刚石AFM探针
  • 批准号:
    11750197
  • 财政年份:
    1999
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ダイヤモンド加工探針の知能化によるナノ計測一体型超微細加工システムの開発
使用智能金刚石加工探针开发与纳米测量集成的超精细加工系统
  • 批准号:
    09750279
  • 财政年份:
    1998
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
次世代ナノリソグラフィーのための知的ナノ加工システムに関する研究
下一代纳米光刻智能纳米加工系统研究
  • 批准号:
    08750293
  • 财政年份:
    1996
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
100MHz帯極薄板水晶振動子のエキシマレーザ加工技術に関する研究
100MHz超薄板晶体谐振器准分子激光加工技术研究
  • 批准号:
    06750726
  • 财政年份:
    1994
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
魔鏡トポグラフによる単結晶シリコン超精密切削面のインプロセス計測に関する研究
利用魔镜形貌在线测量单晶硅超精密切割面的研究
  • 批准号:
    05750105
  • 财政年份:
    1993
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

安全な抗菌ペプチドのin silico分子設計へ資する分子動力学法と機械学習による研究
使用分子动力学方法和机器学习的研究有助于安全抗菌肽的计算机分子设计
  • 批准号:
    24K18085
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
第一原理原子エネルギー計算が実現するオートノマス機械学習分子動力学法の創成
创建自主机器学习分子动力学方法,实现第一原理原子能计算
  • 批准号:
    23K28105
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
第一原理分子動力学法によるセメント系材料の二酸化炭素固定メカニズムの解明
利用第一原理分子动力学方法阐明水泥材料中二氧化碳的固定机制
  • 批准号:
    24K07630
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
粗視化分子動力学法による大規模分子運動シミュレーションのためのフレームワーク構築
利用粗粒度分子动力学方法构建大规模分子运动模拟框架
  • 批准号:
    24K15177
  • 财政年份:
    2024
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An autonomous machine learning-based molecular dynamics method that utilizes first-principles atomic energy calculation
一种基于自主机器学习的分子动力学方法,利用第一原理原子能计算
  • 批准号:
    23H03415
  • 财政年份:
    2023
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
化学反応と機械力学が絡み合う金属の腐食摩耗現象の解明を実現する分子動力学法の開発
发展分子动力学方法来阐明化学反应和机械力学交织在一起的金属腐蚀磨损现象
  • 批准号:
    23KJ0212
  • 财政年份:
    2023
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
第一原理計算と機械学習力場による加速分子動力学法を用いた熱電変換材料の理論設計
使用第一性原理计算和机器学习力场的加速分子动力学方法进行热电转换材料的理论设计
  • 批准号:
    23K03926
  • 财政年份:
    2023
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
分子動力学法に基づくATP合成酵素の制御因子による動的な阻害機構の解明
基于分子动力学方法阐明ATP合成酶调控因子的动态抑制机制
  • 批准号:
    22KJ3188
  • 财政年份:
    2023
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
第一原理分子動力学法に基づく超高圧力下における氷物質の物理的・化学的特性
基于第一性原理分子动力学方法研究超高压冰材料的物理化学性质
  • 批准号:
    23KJ1500
  • 财政年份:
    2023
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
自己修復するトライボ膜の制御に向けた反応分子動力学法の開発と低摩擦界面の学理構築
反应分子动力学方法的发展和控制自修复摩擦膜的低摩擦界面理论的建立
  • 批准号:
    22KJ0268
  • 财政年份:
    2023
  • 资助金额:
    $ 0.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了