Arithmetic of Abelian Varieties
阿贝尔簇算术
基本信息
- 批准号:09640003
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Torsion points of elliptic curvesRoss(1994) proposed the following question : In an isogeny class of ellptic curves over a number field, does there exist an ellptic curve with cyclic rational torsion group? We showed that the answer is affirmative if elliptic curves have no complex multiplication. The following related problems were also investigated : (1) The relation between the number of roots of unity in the field of definition and the minimal order of the torsion group in an isogeny class. (2) the case of complex multiplication.2. Abelian Varieties obtained from elliptic curves with complex multiplicationLet E be an elliptic curves with complex multiplication by an imaginary quadratic field K defined over the absolute class field of K.Let B be an abelian variety obtained from E by re-stricting scalars to K.We studied the structure of B under the assumption that E is a K-curve. (1) B is a simple CM-type abelian variety if and only if the Hecke character of E is obtained by that of K.(2) Otherwise, B is isogenous to a product of simple no CM-type abelian variety.3. Singular Abelian surfaces over the rationalsWe studied on a classification and a construction of such surfaces.4. On a fusion algebras associated with finite abelian groupsConcerning the duality of finite abelian groups, we completely classified the equivalence classes of tensor categories with fusion rules.
1.椭圆曲线的扭点Ross(1994)提出了如下问题:在数域上的一类同源椭圆曲线中,是否存在具有循环有理扭群的椭圆曲线?我们证明了如果椭圆曲线没有复数乘法,则答案是肯定的。研究了如下相关问题:(1)定义域上的单位根个数与同原类中扭群的最小阶之间的关系。(2)复数乘法。设E是定义在K的绝对类域上的虚二次域K的复乘椭圆曲线,B是由E限制标量到K得到的交换簇,我们在假设E是K-曲线的前提下研究了B的结构。(1)B是单CM型阿贝尔变种当且仅当E的Hecke特征标是由K的Hecke特征标得到的;(2)否则,B同源于简单非CM型阿贝尔变种的乘积。有理上的奇异阿贝尔曲面我们研究了这类曲面的分类和构造。考虑到有限交换群的对偶性,我们用融合规则对张量范畴的等价类进行了完全分类。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Nakamura: "Cyclic torsion of elliptic curves" Proc.Amer.Math.Soc.印刷中. (1999)
T.Nakamura:“椭圆曲线的循环扭转”Proc.Amer.Math.Soc. 出版中。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Yamagami 他: "Tensor categories with fusion rules of self-duality for finite abelian groups" Journal of Algebra. 209. 692-707 (1998)
S. Yamagami 等人:“有限交换群的自对偶融合规则的张量类别”代数杂志 209. 692-707 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nakamura: "On characteristic polynomials of formal groups over finite fields" Math.Nachrichten. 188. 289-299 (1997)
T.Nakamura:“关于有限域上形式群的特征多项式”Math.Nachrichten。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nakamura: "Cyclic torsion of elliptic curves" Proc.Amer.Math.Soc.(受理済).
T.Nakamura:“椭圆曲线的循环扭转”Proc.Amer.Math.Soc.(已接受)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NAKAMURA Tetsuo其他文献
NAKAMURA Tetsuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NAKAMURA Tetsuo', 18)}}的其他基金
The process of formation of "the political neutrality of the OlympicGames" in the International Olympic Committee in the 1930s
20世纪30年代国际奥委会“奥运会政治中立”的形成过程
- 批准号:
22500593 - 财政年份:2010
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complex multiplication of elliptic curves and abelian varieties
椭圆曲线和阿贝尔簇的复数乘法
- 批准号:
20540004 - 财政年份:2008
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Issue of Participation in the 1936 Berlin Olympics and the 1940 Tokyo Olympics in America
美国参加1936年柏林奥运会和1940年东京奥运会问题
- 批准号:
18500479 - 财政年份:2006
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Number Theoretic Study of Elliptic Curves
椭圆曲线的数论研究
- 批准号:
16540006 - 财政年份:2004
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CDNA representation analysis of primary and metastatic colon cans
原发性和转移性结肠罐的 cDNA 代表性分析
- 批准号:
10670513 - 财政年份:1998
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Japanese political contact with the Guangxu Reform in China.
日本与中国光绪维新的政治接触.
- 批准号:
08610376 - 财政年份:1996
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
The Equivariant Tamagawa Number Conjecture for the base change of an abelian variety
阿贝尔簇基变的等变玉川数猜想
- 批准号:
171229853 - 财政年份:2010
- 资助金额:
$ 1.6万 - 项目类别:
Priority Programmes