Number Theoretic Study of Elliptic Curves

椭圆曲线的数论研究

基本信息

  • 批准号:
    16540006
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

We intended to solve several number theoretic problems concerning elliptic curves defined over number fields.1. Torsion on elliptic curves.We consider an elliptic curves defined over a number field and its isogeny class. We studied the behavior of the torsion group of elliptic curves on the isogeny class. We got several information of the structure of the torsion groups.2. Quadratic fields with class number divisible by 5.We treated the problem expressing concretely quadratic fields with class number divisible by 5. We proposed a problem to expressing such fields by using parameters satisfying certain conditions and discussed some examples.3. Abelian varieties associated with an imaginary quadratic field.A higher dimensional abelian varietiy A is called singular if A is isogenous to a direct product of an elliptic curve with complex multiplication. We studied them in the following aspects.(1)We investigated how singular abelian surfaces defined over the rational number field are constructed from a Q-curve. We showed that they are obtained by a Galois extension satisfying some conditions and by restriction of scalars of a Q-curve with respect to the extension.(2)We consider singular abelian varieties over the rationals such that they have complex multiplication over the imaginary quadratic field K and they have exact dimension the class number of K. We completed the classification of them and gave a characterization of their Hecke characters over K.
我们打算解决关于数域上椭圆曲线的几个数论问题。椭圆曲线上的挠率。我们考虑定义在数域上的椭圆曲线及其同源类。我们研究了椭圆曲线在同源类上的扭群的性质。我们得到了关于扭群结构的几个信息。讨论了类数可被5整除的二次域的具体表示问题,提出了用满足一定条件的参数来表示类数可被5整除的二次域的问题,并讨论了一些例子。与虚二次域相关的阿贝尔簇。高维阿贝尔簇A称为奇异的,如果A同源于具有复乘的椭圆曲线的直积。研究了定义在有理数域上的奇异阿贝尔曲面是如何由一条Q-曲线构造的。我们证明了它们是通过满足一定条件的Galois扩张和Q-曲线的标量关于扩张的限制而得到的。(2)我们考虑有理数上的奇异交换变种,使得它们在虚二次域K上有复乘法,并且它们的维度正好是K的类数。我们完成了它们的分类,给出了它们在K上的Hecke特征标的刻画。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Torsion on elliptic curves in isogeny classes
同源类椭圆曲线上的扭转
有理数体上の特異アーベル曲面について
关于有理数域上的奇异阿贝尔曲面
類数が5で割り切れる二次体について
关于类数能被 5 整除的二次域
Elliptic Q-curves with complex multiplication
具有复数乘法的椭圆 Q 曲线
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Haraoka;G.Filipuk;Tetsuo Nakamura;Tetsuo Nakamura
  • 通讯作者:
    Tetsuo Nakamura
A classification of Q-curves with complex multiplication
复数乘法 Q 曲线的分类
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAKAMURA Tetsuo其他文献

NAKAMURA Tetsuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAKAMURA Tetsuo', 18)}}的其他基金

The process of formation of "the political neutrality of the OlympicGames" in the International Olympic Committee in the 1930s
20世纪30年代国际奥委会“奥运会政治中立”的形成过程
  • 批准号:
    22500593
  • 财政年份:
    2010
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complex multiplication of elliptic curves and abelian varieties
椭圆曲线和阿贝尔簇的复数乘法
  • 批准号:
    20540004
  • 财政年份:
    2008
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Issue of Participation in the 1936 Berlin Olympics and the 1940 Tokyo Olympics in America
美国参加1936年柏林奥运会和1940年东京奥运会问题
  • 批准号:
    18500479
  • 财政年份:
    2006
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CDNA representation analysis of primary and metastatic colon cans
原发性和转移性结肠罐的 cDNA 代表性分析
  • 批准号:
    10670513
  • 财政年份:
    1998
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic of Abelian Varieties
阿贝尔簇算术
  • 批准号:
    09640003
  • 财政年份:
    1997
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Japanese political contact with the Guangxu Reform in China.
日本与中国光绪维新的政治接触.
  • 批准号:
    08610376
  • 财政年份:
    1996
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Complex Multiplication: Class invariants and cryptographic applications
复数乘法:类不变量和加密应用
  • 批准号:
    239407529
  • 财政年份:
    2013
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Priority Programmes
Computational methods for abelian varieties over number fields with complex multiplication
复数乘法数域上阿贝尔簇的计算方法
  • 批准号:
    239459353
  • 财政年份:
    2013
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Priority Programmes
Dynamical systems and complex multiplication
动力系统和复数乘法
  • 批准号:
    433396-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.86万
  • 项目类别:
    University Undergraduate Student Research Awards
Developing a Theory of Dynamical Complex Multiplication
发展动态复数乘法理论
  • 批准号:
    1102858
  • 财政年份:
    2011
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Complex multiplication of elliptic curves and abelian varieties
椭圆曲线和阿贝尔簇的复数乘法
  • 批准号:
    20540004
  • 财政年份:
    2008
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Periods of modular forms and complex multiplication
模形式和复数乘法的周期
  • 批准号:
    155499-2001
  • 财政年份:
    2007
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
The arithmetic of abelian varieties with complex multiplication and Euler systems.
复杂乘法和欧拉系统的阿贝尔簇算术。
  • 批准号:
    19740010
  • 财政年份:
    2007
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Arithmetic Intersection, Modular Forms, and Complex Multiplication
算术交集、模形式和复数乘法
  • 批准号:
    0555503
  • 财政年份:
    2006
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Continuing Grant
Periods of modular forms and complex multiplication
模形式和复数乘法的周期
  • 批准号:
    155499-2001
  • 财政年份:
    2006
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
Periods of modular forms and complex multiplication
模形式和复数乘法的周期
  • 批准号:
    155499-2001
  • 财政年份:
    2005
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了