Structures and Representations of Association Schemes

协会计划的结构和表示

基本信息

  • 批准号:
    09640062
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

a. Absolute Bound Conjecture of Distance-Regular Graphs and Related Topics: Good progress was made in the classification of distance-regular graphs of order (s, 2). Recent results were included in a lecture note.b. Q-Polynomial Schemes and Balanced Sets: New conditions on Krein parameters were given and several long standing problems of Q-polynomial association schemes were solved u applications of these conditions.c. Decompositions of the Character Products of Finite Croups: The case was studied that the number of distinct irreducible constituents of χィイD12ィエD1, the square of an irreducible character, χ is small. As an application, complete classification of Q-polynomial group schemes was made in cooperation with M. Kiyota.d. Research on Commutative Association Schemes:(1) Spin Models: Recently, Spin models have been studied by many as link invariants. They are defined by a pair of type II matrices, and each type II matrix is associated with a so-called Nomura algebra, which is the Bo … More se-Mesner algebra of a commutative association scheme. As a joint work with H. Tsuchiyama, the complete classification of spin models of size 6 and 7, using the connection between type II matrices and Bose-Mesner algebras of commutative association schemes. Very recently, as a joint work With Rie Hosoya, it was shown that if the Nomura algebra is imprimitive, the type II matrix can be decomposed as a generalized tensor product of type II matrices of smaller size.(2) Balanced Conditions: Desirable generalization of the definition of balanced conditions of non-symmetric commutative association schemes was obtained.(3) Weakly Distance-Regular Digraphs: New and more natural definition of distance regular digraphs, which were called here weakly distance-regular digraphs, was given. As a joint work with Kaishun Wang, the classification of the case when the degree is 2 was completed very recently.e. International Symposium on Algebraic Combinatorics was held at International Christian University in July l997. As an organizer, the symposium home page was prepared and it became 'Algebraic Combinatorics Home Page' (http://alcom.icu.ac.jp/) using the computer installed by the grant. Less
a.距离正则图的绝对有界猜想及相关课题:在(s,2)阶距离正则图的分类方面取得了很好的进展。最近的结果包括在一个讲义中。Q-多项式方案与平衡集:给出了Krein参数的新条件,并应用这些条件解决了Q-多项式结合方案的几个长期存在的问题。有限群的特征标积的分解:研究了不可约特征标的平方χ的不同不可约分支χ D12 D1的个数很小的情况。作为应用,与M. Kiyota.d.交换结合方案的研究:(1)自旋模型:近年来,自旋模型作为连接不变量被许多人研究。它们由一对II型矩阵定义,每个II型矩阵与一个所谓的Nomura代数相关联,即Bo ...更多信息 交换结合概型的se-Mesner代数作为与H. Tsuchiyama,大小为6和7的自旋模型的完整分类,使用II型矩阵和交换结合方案的Bose-Mesner代数之间的联系。最近,作为一个联合工作与细谷理惠,它表明,如果野村代数是imprimitive,第二型矩阵可以分解为广义张量积的第二型矩阵的较小规模。(2)平衡条件:得到了非对称交换结合方案平衡条件定义的理想推广。(3)弱距离正则有向图:给出了距离正则有向图的新的更自然的定义,称之为弱距离正则有向图。作为与王凯顺的合作工作,最近完成了度为2时的病例分类。1997年7月在国际基督教大学举行了国际代数组合数学研讨会。作为组织者,准备了研讨会主页,并使用赠款安装的计算机将其变成了“代数组合学主页”(http://alcom.icu.ac.jp/)。少

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
篠田健一 (編): "Three Lectures in Algebra (上智大学数学講究録41)" 上智大学数学教室, 134 (1999)
Kenichi Shinoda(编辑):“代数三讲(上智大学数学讲座41)”上智大学数学系,134(1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Kiyota and H. Suzuki: "Character Products and Q-polynoimial Group Association Schemes"Journal of Algebra. (to appear).
M. Kiyota 和 H. Suzuki:“字符积和 Q 多项式群关联方案”代数杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Suzuki: "Association Schemes with Multiple Q-polynomial Structwes" Journal of Algebraic Combinator・cs. 7(印刷中). (1998)
H.Suzuki:“与多个 Q 多项式结构的关联方案”《代数组合器·cs》杂志(1998 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Hiraki: "Distance-Regular Graphs of Valency 6 and a_1=1"Journal of Algebraic Combinatorics. 11. 101-134 (2000)
A.Hiraki:“化合价 6 和 a_1=1 的距离正则图”代数组合学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Shinoda (ed.): "Three Lectures in Algebra"Lecture Note Series in Mathematics, Sophia University. 132 (1999)
K. Shinoda(主编):“代数三讲”数学讲义系列,上智大学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUZUKI Hiroshi其他文献

MR ZODIAC TOP」Virtual Reality International Conference
MR ZODIAC TOP”虚拟现实国际会议
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    YAGIMOTO Ken;SATO Hisashi;SUZUKI Hiroshi;SHIMOJIMA Alan;CHO Satoshi
  • 通讯作者:
    CHO Satoshi
Fukushima Daiichi Nuclear Power Plant Disaster: Recovery Visions and Subsequent Recovery Projects
福岛第一核电站灾难:恢复愿景和后续恢复项目
  • DOI:
    10.5363/tits.26.3_16
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    塩尻大也;小槻峻司;齋藤匠;OUYANG Mao;Yutaro Furuichi;SUZUKI Hiroshi
  • 通讯作者:
    SUZUKI Hiroshi
MR ZODIAC TOP
十二生肖先生上衣
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    YAGIMOTO Ken;SATO Hisashi;SUZUKI Hiroshi;SHIMOJIMA Alan;CHO Satoshi
  • 通讯作者:
    CHO Satoshi
Photoemission-based Characterization of Interface Dipoles and Defect States for Gate Dielectrics
基于光电发射的界面偶极子和栅极电介质缺陷状态的表征
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    塩尻大也;小槻峻司;齋藤匠;OUYANG Mao;Yutaro Furuichi;SUZUKI Hiroshi;S. Miyazaki
  • 通讯作者:
    S. Miyazaki
: anoramic Video Capturing for Digital Archiving of Historic Landscape
:用于历史景观数字存档的全景视频捕捉
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    YAGIMOTO Ken;SATO Hisashi;SUZUKI Hiroshi;SHIMOJIMA Alan;CHO Satoshi;Tsuyoshi Yamamoto
  • 通讯作者:
    Tsuyoshi Yamamoto

SUZUKI Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUZUKI Hiroshi', 18)}}的其他基金

Usefulness of pre-hospital 12-lead electrocardiogram from K-ACTIVE registry
K-ACTIVE 登记处的院前 12 导联心电图的有用性
  • 批准号:
    20K08434
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Supply on the Houses for the Elderly with the Service to Take Out Self Support and Cooperation of the Elderly and the Community
老年人住房供应与服务开展自养、老年人与社区合作
  • 批准号:
    17K06733
  • 财政年份:
    2017
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Trial Production of Large Scale Nanofiber/Resin Film with Conductivity and Translucency by Applying Traveling Electric Field
应用行电场试制大尺寸导电半透明纳米纤维/树脂薄膜
  • 批准号:
    17K06061
  • 财政年份:
    2017
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sharing the view of the earth from an extraterrestrial viewpoint-Internationalization of art expression technology using earth observation satellites-
从外星人的角度分享地球的风景-利用地球观测卫星的艺术表达技术的国际化-
  • 批准号:
    16K02318
  • 财政年份:
    2016
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Pilot study to assess the potential of oral appliance with lingual frenulum depressor therapy for improving respiration during sleep.
初步研究旨在评估口腔矫治器联合舌系带减压器治疗改善睡眠期间呼吸的潜力。
  • 批准号:
    15K11200
  • 财政年份:
    2015
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Empirical Study of Meta-Engineering as Technology Management
元工程作为技术管理的实证研究
  • 批准号:
    15K03711
  • 财政年份:
    2015
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of floral scent characteristics involved in the speciation
花香特征与物种形成相关的研究
  • 批准号:
    26440215
  • 财政年份:
    2014
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Alignment of Carbon Nanotubes in Ultraviolet Curing Resin with Traveling Electric Field Application and Electric Property Evaluation of the Composites
紫外固化树脂中碳纳米管的行电场取向及复合材料电性能评价
  • 批准号:
    25420029
  • 财政年份:
    2013
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Implantation of erythropoietin-cultured bone marrow stromal cell in patients with intractable peripheral artery disease
促红细胞生成素培养的骨髓基质细胞植入顽固性外周动脉疾病患者
  • 批准号:
    24591072
  • 财政年份:
    2012
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Heat Transfer and Solidification Control of Latent Heat Transportation Slurries by Nano-Particle Addition
纳米颗粒添加对潜热传输浆料的传热和凝固控制
  • 批准号:
    24360319
  • 财政年份:
    2012
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    2200850
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Continuing Grant
RUI: Galois Automorphisms and Local-Global Properties of Representations of Finite Groups
RUI:有限群表示的伽罗瓦自同构和局部全局性质
  • 批准号:
    2100912
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
  • 批准号:
    EP/T030771/1
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Research Grant
Summer School for Young Researchers on Representations of Finite Groups
有限群表示青年研究人员暑期学校
  • 批准号:
    2001077
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
  • 批准号:
    EP/T029455/1
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Research Grant
Construction of relatively cuspidal representations of finite groups of Lie type
有限李型群的相对尖头表示的构造
  • 批准号:
    540389-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.98万
  • 项目类别:
    University Undergraduate Student Research Awards
Centralizer for the tensor representations of finite groups and diagram algebras
有限群和图代数张量表示的中心化器
  • 批准号:
    19K03398
  • 财政年份:
    2019
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of finite groups and Auslander-Reiten quivers
有限群和 Auslander-Reiten 箭袋的表示
  • 批准号:
    19K03451
  • 财政年份:
    2019
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Categorical study for representations of finite groups
有限群表示的分类研究
  • 批准号:
    19K03457
  • 财政年份:
    2019
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    1839351
  • 财政年份:
    2018
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了