Construction of actions of operator algebraic quantum groups on injective factors and their classification

算子代数量子群对内射因子作用的构造及其分类

基本信息

  • 批准号:
    09640142
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

(1) Yamanouchi has made an intensive research on actions of compact Kac algebras on von Neumann algebras. He introduced a notion of Connes spectrum for such actions in order to provide a tool for classification of such a class of actions on operator algebras. He proved among others that the crossed product by a compact Kac algebra action is a factor if and only if the action is centrally ergodic and has full Connes spectrum, which clarified that Connes spectrum largely dominates behavior of this kind of actions. He next showed that, when a compact Kac algebra action is minimal, it is at the same time dominant, and studied a Galois correspondence induced by such an action. Meanwhile, in order to capture quantum groups in the framework of von Neumann algebras that are not in the category of Kac algebras, Yamanouchi introduced a notion of a quasi Woronowicz algebra. He showed that this class of operator algebra quatum groups contains, as examples, q-deformations of Lie groups as well as q … More uantum groups that derive from matched piars of locally compact groups by the method of Takeuchi-Majid.(2) Sekine independently succeeded in characterizing factoriality of the crossed product by an action of a compact Kac algebra using a methos different from Yamanouchi's. His result generalizes a classical theorem by Paschke.(3) Kishimoto has made a very unique research on automorphisms on AT-CィイD1*ィエD1-algebras. He has especially studied automorphisms with the Rohlin property. As a result, he was able to give characterizations as to when an automorphism on a simple, real-rank zero AT-CィイD1*ィエD1-algebra has the Rohlin property. He showed also that one can contstruct on such a CィイD1*ィエD1-algebra a one-papameter automorphism group with the Rohlin property, and proved that the crossed product by it is again a simple real-rank zero AT-CィイD1*ィエD1-algebra. Meanwhile, Kishimoto showed that, for an arbitrary pair of simple dimension groups, one can construct a simple real-rank zero AT-CィイD1*ィエD1-algebra and a one-parameter automorphism group on it such that the K-groups of the associated crossed product are exactly the given dimension groups. Less
(1)Yamanouchi对紧Kac代数在von Neumann代数上的作用作了深入的研究。他引入了这类作用的Connes谱的概念,以便为算子代数上这类作用的分类提供一种工具。他证明了紧Kac代数作用的交叉积是一个因子当且仅当该作用是中心遍历的且具有全Connes谱,这阐明了Connes谱在很大程度上支配着这类作用的行为。其次,他证明了当一个紧Kac代数作用是极小的时,它同时是占优的,并研究了由这种作用诱导的Galois对应。同时,为了在von Neumann代数的框架下捕捉不属于Kac代数范畴的量子群,Yamanouchi引入了拟Woronowicz代数的概念。他证明了这类算子代数拟群包含,作为例子,李群的q-变形以及q…(2)Sekine利用与Yamanouchi不同的方法,独立地利用紧Kac代数的作用刻画了交叉积的阶乘性。他的结果推广了Paschke的一个经典定理。(3)岸本对AT-CィイD_1*ィエD_1-代数的自同构做了非常独特的研究。他特别研究了具有Rohlin性质的自同构。因此,他能够刻画简单的实秩零AT-CィイD_1*ィエD_1-代数上的自同构何时具有Rohlin性质。他还证明了在这样的C-ィイD_1*ィエD_1-代数上可以构造一个具有Rohlin性质的单参数自同构群,并证明了它的交叉积又是一个简单的实秩零的AT-CィイD_1*ィエ_1-代数。同时,Kishimoto证明了,对于任意一对简单维群,我们可以构造一个简单的实数秩零的AT-CィイD_1*ィエD_1-代数和它上的一个单参数自同构群,使得相关交叉积的K-群正好是给定的维群。较少

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Akitaka KISHIMOTO(with D.E.Evans): "Trace scaling automorphisms of certain stable AF algebras"Hokkaido Mathematical Journal. 26. 211-224 (1997)
Akitaka KISHIMOTO(与 D.E.Evans):“某些稳定 AF 代数的迹标度自同构”北海道数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A. Kishimoto: "Trace scaling automorphisms of certain stable AF algebras"Hokkaido Math. J.. 26. 211-224 (1997)
A. Kishimoto:“某些稳定 AF 代数的迹标度自同构”北海道数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
YOSHIHIRO SEKINE: "An analogue of Paschke's theorem for actions of compact Kac algebras" Kyushu Journal of Mathematics. (掲載予定).
YOSHIHIRO SEKINE:“紧致 Kac 代数作用的 Paschke 定理的模拟”九州数学杂志(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshihiro SEKINE: "An analogue of Paschke's theorem for actions of compact Kac algebras"Kyushu Journal of Mathematics. 52. 353-359 (1998)
Yoshihiro SEKINE:“紧凑 Kac 代数作用的 Paschke 定理的类似物”九州数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Yamanouchi: "Double group construction of quantum groups in the von Neumann algebra framework"J. Math. Soc. Japan. (in press).
T. Yamanouchi:“冯诺依曼代数框架中量子群的双群构造”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMANOUCHI Takehiko其他文献

YAMANOUCHI Takehiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMANOUCHI Takehiko', 18)}}的其他基金

Research on von Neumann algebras from a viewpoint of their close relation with ergodic theory
从冯·诺依曼代数与遍历理论的密切关系研究冯·诺依曼代数
  • 批准号:
    19540206
  • 财政年份:
    2007
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Systematic study of quantum groups from the viewpoint of operator algebras
从算子代数角度系统研究量子群
  • 批准号:
    12640199
  • 财政年份:
    2000
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Research of quantum group actions on operator algebras
算子代数上的量子群作用研究
  • 批准号:
    21K03280
  • 财政年份:
    2021
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Commutative Spaces, Their Symmetries, and Geometric Quantum Group Theory
非交换空间、它们的对称性和几何量子群论
  • 批准号:
    2001128
  • 财政年份:
    2020
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
Research of quantum group actions on operator algebras
算子代数上的量子群作用研究
  • 批准号:
    18K03317
  • 财政年份:
    2018
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conformal field theory and quantum group
共形场论和量子群
  • 批准号:
    17K05194
  • 财政年份:
    2017
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantization of the fundamental group by dual quantum group
双量子群对基本群的量子化
  • 批准号:
    17K18728
  • 财政年份:
    2017
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Study of group-quantum group actions on operator algebras
算子代数群量子群作用的研究
  • 批准号:
    15K04889
  • 财政年份:
    2015
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vertex operator algebras and quantum group
顶点算子代数和量子群
  • 批准号:
    25400009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of quantum group actions on von Neumann algebras
冯诺依曼代数的量子群作用研究
  • 批准号:
    24740095
  • 财政年份:
    2012
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Cyclic homology and quantum group symmetry
循环同调性和量子群对称性
  • 批准号:
    EP/E043267/1
  • 财政年份:
    2007
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Fellowship
Irreducible unitary representation of non compact quantum group SUq(1,1) and its quantum symmetric space
非紧量子群SUq(1,1)及其量子对称空间的不可约酉表示
  • 批准号:
    11440052
  • 财政年份:
    1999
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了