Spectral and Scattering Theory and its Application

光谱与散射理论及其应用

基本信息

项目摘要

The present project has been devoted to the study on the following three subjects related to the spectral and scattering theory for Schr_dinger operators.(1) For exponential product formula(Lie-Trotter-Kato product formula), the convergence in operator norm has been proved and the error estimate has been also established. The 9btained results have been applied to Schr_dinger semi-groups or propagators with singular or time-dependent potentials.(2) The unperturbed Pauli operator without electric potentials has zero eigenvalue with infinite multiplicities as its bottom of essential spectrum. When the operators are perturbed by potentials falling off at infinity, the asymptotic distribution of discrete eigenvalues near the origin has been studied. The special emphasis is placed on the case that Pauli operators do not necessarily have constant magnetic fields.(3) The asymptotic behavior at low energy of scattering amplitudes has been analysed for scattering by two dimensional magnetic fields and the relation to scattering by magnetic fields with small support has been also discussed.
本文主要研究了薛定谔算子的谱和散射理论中的三个问题:(1)对于指数乘积公式(Lie-Trotter-Kato乘积公式),证明了算子范数收敛,并建立了误差估计。所得结果已应用于具有奇异势或含时变势的Schr_dinger半群或传播子。(2)无电势的未受扰动的Pauli算子的本征值为零且有无穷多个本征值作为其本质谱的底。当算子被无穷大处的势扰动时,研究了离散本征值在原点附近的渐近分布。特别强调了Pauli算符不一定具有恒定磁场的情况。(3)分析了二维磁场散射在低能散射幅度下的渐近行为,并讨论了与小支撑磁场散射的关系。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Tamura: "Asymptotic distribution of eigenvalues for Pauli operators with nonconstant magnetic fields" Duke Math. J.93. 535-574 (1998)
H.Tamura:“具有非恒定磁场的泡利算子特征值的渐近分布”杜克数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Tamura: "Euor bounds on exponeutial product farmulas for Sohiodinger operators" J.Math.Soc.Japan. 50. 359-377 (1998)
H.Tamura:“Euor 对 Sohiodinger 算子的指数乘积公式的限制”J.Math.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Tamura: "Asymptotic distribution of negative eigenvalues for two dimensional Pauli operators with spherically symmetric magnetic fields" Tsukuba J. Math.22. 281-303 (1998)
H.Tamura:“具有球对称磁场的二维泡利算子负特征值的渐近分布”Tsukuba J. Math.22。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Tamura: "Error bounds on exponential product formulas for Sahiodinger operators" J.Math.Soc.Japan. 50. 359-377 (1998)
H.Tamura:“Sahiodinger 运算符的指数乘积公式的错误界限”J.Math.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Tamura and A.Iwatsuka: "Asymptotic distribution of eigenvalues for Pauli operators with nonconstant magnetic fields" Duke Math.J. 93. 535-574 (1998)
H.Tamura 和 A.Iwatsuka:“具有非恒定磁场的泡利算子特征值的渐近分布”Duke Math.J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAMURA Hideo其他文献

TAMURA Hideo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAMURA Hideo', 18)}}的其他基金

Spectral asymptotic analysis for Schrodinger operators
薛定谔算子的谱渐近分析
  • 批准号:
    21340037
  • 财政年份:
    2009
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Asymptotic Analysis in Spectral and Scattering Theory
光谱和散射理论中的渐近分析
  • 批准号:
    18340049
  • 财政年份:
    2006
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scattering of Dirac particles by mabnetic fields and spectral theory
磁场和谱理论对狄拉克粒子的散射
  • 批准号:
    15540206
  • 财政年份:
    2003
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scattering by magnetic fields and Aharonov-Bohm effect
磁场和阿哈罗诺夫-玻姆效应的散射
  • 批准号:
    13640176
  • 财政年份:
    2001
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral Theory for Schrodinger Operators with Magnetic Fields and its Application
磁场薛定谔算子的谱理论及其应用
  • 批准号:
    11440056
  • 财政年份:
    1999
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).

相似海外基金

The norm estimate of the difference between the Kac transfer operator and the Schrodinger semigroup
Kac 转移算子与薛定谔半群之间差异的范数估计
  • 批准号:
    09440053
  • 财政年份:
    1997
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了